Objective To develop a quantifiable behavioral test for identification of achromatopsic dogs based on visual performance. Animals 14 dogs. Procedures A 3.6-m-long obstacle-avoidance course with 6 obstacle panels was developed from a preliminary 2.4-m-long course. Achromatopsic and visually normal control dogs were run through the course at 4 ambient light intensities (from dim to bright: 0.2, 25, 65, and 646 lux). Completion of 4 runs ranging from dimmest to brightest light intensity constituted 1 complete trial. Each dog underwent 3 trials. Transit times were measured and compared between dog groups and between light intensities by use of a generalized linear model and ANOVA. Results At the 3 highest light intensities, the achromatopsic dogs needed significantly more time to pass through the obstacle course than the control animals. Compared with the mean transit time at the lowest light intensity, mean transit times were 2.6 times as long at 25 lux, 3.2 times as long at 65 lux, and 5.7 times as long at 646 lux. The achromatopsic dogs had signs of increasing difficulty navigating around the obstacle panels with increasing light intensities; this was not the situation for the control dogs. Conclusions and Clinical Relevance A 3.6-m-long obstacle-avoidance course with 6 movable obstacle panels allowed identification of achromatopsic dogs at ambient light intensities ≥ 25 lux based on transit times. This test could be helpful in the evaluation of new cone photoreceptor–specific treatments.
Objective-To develop a quantifiable behavioral test for identification of achromatopsic dogs based on visual performance. Animals-14 dogs.Procedures-A 3.6-m-long obstacle-avoidance course with 6 obstacle panels was developed from a preliminary 2.4-m-long course. Achromatopsic and visually normal control dogs were run through the course at 4 ambient light intensities (from dim to bright: 0.2, 25, 65, and 646 lux). Completion of 4 runs ranging from dimmest to brightest light intensity constituted 1 complete trial. Each dog underwent 3 trials. Transit times were measured and compared between dog groups and between light intensities by use of a generalized linear model and ANOVA.Results-At the 3 highest light intensities, the achromatopsic dogs needed significantly more time to pass through the obstacle course than the control animals. Compared with the mean transit time at the lowest light intensity, mean transit times were 2.6 times as long at 25 lux, 3.2 times as long at 65 lux, and 5.7 times as long at 646 lux. The achromatopsic dogs had signs of increasing difficulty navigating around the obstacle panels with increasing light intensities; this was not the situation for the control dogs. Conclusions and ClinicalRelevance-A 3.6-m-long obstacle-avoidance course with 6 movable obstacle panels allowed identification of achromatopsic dogs at ambient light intensities ≥ 25 lux based on transit times. This test could be helpful in the evaluation of new cone photoreceptorspecific treatments.The clinical, psychophysical evaluation of visual performance is generally less sophisticated in because of limitations in the assessment of responses to visual stimuli by an untrained animal. The testing of general visual performance in dogs is usually limited to rather simple methods such as the menace response test, the visual placing reaction, and the tracking of objects such as a cotton ball or laser pointer. 1,2 In a clinical setting, dogs may be observed maneuvering around obstacles under different, often ill-defined, ambient light intensities in the examination
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.