The spatial complexity of highly vulnerable structures makes surgical resection of brainstem cavernomas (BSC) a challenging procedure. Diffusion tensor imaging (DTI) allows for the visualization of white matter tracts and enables a better understanding of the anatomical location of corticospinal and sensory tracts before and after surgery.We investigated the feasibility and clinical usefulness of DTI-based fiber tractography in patients with BSC.Pre- and postoperative DTI visualization of corticospinal and sensory tracts were retrospectively analyzed in 23 individuals with BSC. Preoperative and postoperative DTI-fiber accuracy were associated to the neurological findings. Preoperatively, the corticospinal tracts were visualized in 90 % of the cases and the sensory tracts were visualized in 74 % of the cases. Postoperatively, the corticospinal tracts were visualized in 97 % of the cases and the sensory tracts could be visualized in 80 % of the cases. In all cases, the BSC had caused displacement, thinning, or interruption of the fiber tracts to various degrees. Tract visualization was associated with pre- and postoperative neurological findings. Postoperative damage of the corticospinal tracts was observed in two patients. On follow-up, the Patzold Rating (PR) improved in 19 out of 23 patients (83 %, p = 0.0002).This study confirms that DTI tractography allows accurate and detailed white matter tract visualization in the brainstem, even when an intraaxial lesion affects this structure. Furthermore, visualizing the tracts adjacent to the lesion adds to our understanding of the distorted intrinsic brainstem anatomy and it may assists in planning the surgical approach in specific cases.
Background A radiation-free advanced imaging modality is desirable for investigating congenital thoracic malformations in young children. Objective To describe magnetic resonance imaging (MRI) findings of congenital bronchopulmonary foregut malformations and investigate the ability of lung MRI for their classification. Materials and methods This is a retrospective analysis of consecutive MRI examinations performed for suspected congenital lung anomalies in 39 children (median age: 3.8 months, range: 2 days-15 years). Morphological and perfusion findings were characterised on respiratory-gated fast spin echo and dynamic contrast-enhanced sequences obtained at 1.5 tesla. Abnormalities were classified independently by two readers and compared to an expert diagnosis based on pathology, surgery and/or other imaging. Results Main diagnoses included bronchopulmonary lesions in 33 patients, scimitar syndrome in 4 patients, pulmonary arteriovenous malformation and oesophageal duplication cyst in one patient each. Of 46 observed abnormalities, 44 (96%) were classified correctly with very good interobserver agreement (96% concordance rate). The 39 detected lung lesions included isolated overinflation (17/39, 44%), cystic pulmonary airway malformation (8/39, 21%), bronchopulmonary sequestration (7/39, 18%), bronchogenic cyst (4/39, 10%) and hybrid lesion (3/39, 8%). All lung lesions presented as perfusion defect at peak pulmonary enhancement. Non-cystic lesions showed a delayed peak (median delay: 2.8 s, interquartile range: 0.5 to 4.0 s) in relation to normal lung parenchyma. Conclusion A dedicated lung MRI protocol including respiratory compensated sequences, dynamic angiography and perfusion is able to reliably delineate parenchymal and vascular components of congenital bronchopulmonary foregut malformations. Therefore, MRI may be considered for comprehensive postnatal evaluation of congenital thoracic malformations.
Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.