A common method for calculating results from qPCR experiments is the comparative Ct method, also called the 2(-ΔΔCt) method. However, several assumptions are included in the 2(-ΔΔCt) method and standard statistical analyses are not directly applicable. Here, we describe a different method, the X(0) method, for result calculations and statistical analysis from qPCR experiments. The X(0) method differs from the 2(-ΔΔCt) method by introducing a conversion of the exponentially related Ct values into linearly related X(0) values, which represent the amount of starting material in a qPCR experiment. Results calculated by the X(0) method are illustrated for qPCR experiments with technical and biological replicates, including procedures to calculate standard deviations. Incorporation of primer efficiencies in calculations by the X(0) method is also described. Altogether, the X(0) method constitutes a very simple and accurate alternative to the 2(-ΔΔCt) method for result calculations from qPCR data.
A healthy lifestyle, including regular physical exercise, is generally believed to improve cognitive function and enhance neurogenesis. Such physical exercise-induced effects are associated with increased brain expression of neurotrophic and growth factors. In the present study, we investigated Bdnf, Igf-1, Fgf-2, Egf, and VegfA messenger RNA (mRNA) expression levels in the male rat hippocampus and frontal cortex after 2 weeks of voluntary physical exercise. Whereas the expression of Fgf-2 was upregulated in the hippocampus and prefrontal cortex by physical exercise, the expression levels of Bdnf transcript 1, Bdnf transcript 4, Igf-1, and VegfA were upregulated only in the hippocampus. We focused our subsequent analyses on the VegfA gene, which encodes vascular endothelial growth factor, a signaling molecule important for angiogenesis, vasculogenesis, and neurogenesis. To study the epigenetic mechanisms involved in the physical exercise-mediated induction of VegfA expression, we used oxidative and non-oxidative bisulfite pyrosequencing to analyze VegfA promoter DNA methylation and DNA hydroxymethylation. We observed discrete DNA hypomethylation at specific CpG sites in rats that engaged in physical exercise relative to sedentary rats. This is exemplified by a CpG site located within a VegfA promoter Sp1/Sp3 transcription factor recognition element. DNA hydroxymethylation was present at the VegfA promoter, but no differences in DNA hydroxymethylation were observed in rats that engaged in physical exercise relative to sedentary rats. Moreover, we observed increased Tet1 and decreased Dnmt3b mRNA expression in the hippocampi of rats that engaged in physical exercise. The presented results substantiate the involvement of epigenetics as a mediator of the beneficial effects of physical exercise and point to the importance of analyzing factors beyond Bdnf to delineate the mechanisms behind the functional impacts of physical exercise in mediating benefits to the brain.
Expansion in the repeat number of intragenic trinucleotide repeats (TNRs) is associated with a variety of inherited human neurodegenerative diseases. To study the composition of TNRs in a mammalian species representing an evolutionary intermediate between humans and rodents, we describe in this paper the identification of porcine noncoding and polyglutamine-encoding TNR regions and the comparison to the homologous TNRs from human, chimpanzee, dog, opossum, rat, and mouse. Several of the porcine TNR regions are highly polymorphic both within and between different breeds. The TNR regions are more conserved in terms of repeat length between humans and pigs than between humans and rodents suggesting that TNR lengths could be implicated in mammalian evolution. The TNRs in the FMR2, SCA6, SCA12, and Huntingtin genes are comparable in length to alleles naturally occurring in humans, and also in FMR1, a long uninterrupted CGG TNR was identified. Most strikingly, we identified a Huntingtin allele with 21 uninterrupted CAG repeats encoding a stretch of 24 polyglutamines. Examination of this particular Huntingtin TNR in 349 porcine offspring showed stable transmission. The presence in the porcine genome of TNRs within genes that, in humans, can undergo pathogenic expansions support the usage of the pig as an alternative animal model for studies of TNR evolution, stability, and functional properties.
Physical exercise results in the increased expression of neurotrophic factors and the subsequent induction of signal transduction cascades with a positive impact on neuronal functions. In this study, we used a voluntary physical exercise rat model to determine correlations in hippocampus mRNA expression of the neurotropic factors Bdnf, VegfA, and Igf1; their receptors TrkB, Igf1R, VegfR1, and VegfrR2; and downstream signal transducers Creb, Syn1, and Vgf. In hippocampi of physically exercised rats, the mRNA expression levels of Bdnf transcript 4 (Bdnf-t4), VegfA, and Igf1, as well as VegfR1, TrkB, Creb, Vgf, and Syn1, were increased. Bdnf-t4 mRNA expression positively correlated with mRNA expression of Creb, Vgf, and Syn1 in hippocampi of exercised rats. A correlation between Bdnf-t4 and Syn1 mRNA expression was also observed in hippocampi of sedentary rats. Igf1 and VegfA mRNA expression was positively correlated in hippocampi of both exercised and sedentary rats. But, neither Igf1 nor VegfA mRNA expression was correlated with the expression of Bdnf-t4 or the expression of the signal transducers Creb, Syn1, and Vgf. In hippocampi of exercised rats, Creb mRNA expression was positively correlated with TrkB, Syn1, and Vgf mRNA expression and with the correlation between Creb and Vgf mRNA expression also observed in hippocampi of sedentary rats. To examine for causality of the in vivo observed correlated mRNA expression levels between Bdnf-t4 and the other examined transcripts, we used nuclease-deactivated CRISPR-Cas9 fused with VP64 to induce mRNA expression of endogenous Bdnf-t4 in rat PC12 cells. Following Bdnf-t4 mRNA induction, we observed increased Creb mRNA expression. This in vitro result is in accordance with the in vivo results and supports that under specified conditions, an increase in Creb mRNA expression can be a downstream signal transduction event due to induction of endogenous Bdnf mRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.