Background Microalgae are emerging as promising sustainable sources for biofuels, biostimulants in agriculture, soil bioremediation, feed and human nutrients. Nonetheless, the molecular mechanisms underpinning microalgae physiology and the biosynthesis of compounds of biotechnological interest are largely uncharacterized. This hinders the development of microalgae full potential as cell-factories. The recent application of omics technologies into microalgae research aims at unraveling these systems. Nevertheless, the lack of specific tools for analysing omics raw data generated from microalgae to provide biological meaningful information are hampering the impact of these technologies. The purpose of ALGAEFUN with MARACAS consists in providing researchers in microalgae with an enabling tool that will allow them to exploit transcriptomic and cistromic high-throughput sequencing data. Results ALGAEFUN with MARACAS consists of two different tools. First, MARACAS (MicroAlgae RnA-seq and Chip-seq AnalysiS) implements a fully automatic computational pipeline receiving as input RNA-seq (RNA sequencing) or ChIP-seq (chromatin immunoprecipitation sequencing) raw data from microalgae studies. MARACAS generates sets of differentially expressed genes or lists of genomic loci for RNA-seq and ChIP-seq analysis respectively. Second, ALGAEFUN (microALGAE FUNctional enrichment tool) is a web-based application where gene sets generated from RNA-seq analysis as well as lists of genomic loci from ChIP-seq analysis can be used as input. On the one hand, it can be used to perform Gene Ontology and biological pathways enrichment analysis over gene sets. On the other hand, using the results of ChIP-seq data analysis, it identifies a set of potential target genes and analyses the distribution of the loci over gene features. Graphical representation of the results as well as tables with gene annotations are generated and can be downloaded for further analysis. Conclusions ALGAEFUN with MARACAS provides an integrated environment for the microalgae research community that facilitates the process of obtaining relevant biological information from raw RNA-seq and ChIP-seq data. These applications are designed to assist researchers in the interpretation of gene lists and genomic loci based on functional enrichment analysis. ALGAEFUN with MARACAS is publicly available on https://greennetwork.us.es/AlgaeFUN/.
Earth tilted rotation and translation around the Sun produce one of the most pervasive periodic environmental signals on our planet giving rise to seasonal variations in diel cycles. Although marine phytoplankton plays a key role on ecosystems and present promising biotechnological applications, multiomics integrative analysis of their response to these rhythms remains largely unexplored. We have chosen the marine picoeukaryoteOstreococcus taurias model organism grown under summer long days, winter short days, constant light and constant dark conditions to characterize these responses in marine phytoplankton. Although 80% of the transcriptome present diel rhythmicity under both seasonal conditions less than 5% maintained oscillations under all constant conditions. A drastic reduction in protein abundance rhythmicity was observed with 55% of the proteome oscillating. Seasonally specific rhythms were found in key physiological processes such as cell cycle progression, photosynthetic efficiency, carotenoid content, starch accumulation and nitrogen assimilation. A global orchestration between transcriptome, proteome and physiological dynamics was observed with specific seasonal temporal offsets between transcript, protein and physiological peaks.
Background: Microalgae are emerging as promising sustainable sources for biofuels, biostimulants in agriculture, soil bioremediation, feed and human nutrients. Nonetheless, the molecular mechanisms underpinning microalgae physiology and the biosynthesis of compounds of biotechnological interest are largely uncharacterized. This hinders the development of microalgae full potential as cell-factories. The recent application of omics technologies into microalgae research aims at unraveling these systems. Nevertheless, the lack of specific tools for analysing omics raw data generated from microalgae to provide biological meaningful information are hampering the impact of these technologies. The purpose of ALGAEFUN with MARACAS consists in providing researchers in microalgae with an enabling tool that will allow them to exploit transcriptomic and cistromic high-throughput sequencing data. Results: ALGAEFUN with MARACAS consists of two different tools. First, MARACAS (MicroAlgae RnA-seq and Chip-seq AnalysiS) implements a fully automatic computational pipeline receiving as input RNA-seq (RNA sequencing) or ChIP-seq (chromatin immunoprecipitation sequencing) raw data from microalgae studies. MARACAS generates sets of differentially expressed genes or lists of genomic loci for RNA-seq and ChIP-seq analysis respectively. Second, ALGAEFUN (microALGAE FUNctional enrichment tool) is a web-based application where gene sets generated from RNA-seq analysis as well as lists of genomic loci from ChIP-seq analysis can be used as input. On the one hand, it can be used to perform Gene Ontology and biological pathways enrichment analysis over gene sets. On the other hand, using the results of ChIP-seq data analysis, it identifies a set of potential target genes and analyses the distribution of the loci over gene features. Graphical representation of the results as well as tables with gene annotations are generated and can be downloaded for further analysis. Conclusions: ALGAEFUN with MARACAS provides an integrated environment for the microalgae research community that facilitates the process of obtaining relevant biological information from raw RNA-seq and ChIP-seq data. These applications are designed to assist researchers in the interpretation of gene lists and genomic loci based on functional enrichment analysis. ALGAEFUN with MARACAS is publicly available on https://greennetwork.us.es/AlgaeFUN/ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.