SummaryThe identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.
Cell division cycle protein 45 (Cdc45) plays a critical role in DNA replication to ensure that chromosomal DNA is replicated only once per cell cycle. We analysed the expression of human Cdc45 in proliferating and nonproliferating cells. Our findings show that Cdc45 protein is absent from long‐term quiescent, terminally differentiated and senescent human cells, although it is present throughout the cell cycle of proliferating cells. Moreover, Cdc45 is much less abundant than the minichromosome maintenance (Mcm) proteins in human cells, supporting the concept that origin binding of Cdc45 is rate limiting for replication initiation. We also show that the Cdc45 protein level is consistently higher in human cancer‐derived cells compared with primary human cells. Consequently, tumour tissue is preferentially stained using Cdc45‐specific antibodies. Thus, Cdc45 expression is tightly associated with proliferating cell populations and Cdc45 seems to be a promising candidate for a novel proliferation marker in cancer cell biology.
Cdc45 is an essential cellular protein that functions in both the initiation and elongation of DNA replication. Here, we analyzed the localization of human Cdc45 and its interactions with other proteins during the cell cycle. Human Cdc45 showed a diffuse distribution in G1 phase, a spot-like pattern in S and G2, and again a diffuse distribution in M phase of the cell cycle. The co-localization of Cdc45 with active replication sites during S phase suggested that the human Cdc45 protein was part of the elongation complex. This view was corroborated by findings that Cdc45 interacted with the elongating DNA polymerases δ δ δ δ and ε ε ε ε , with Psf2, which is a component of the GINS complex as well as with Mcm5 and 7, subunits of the putative replicative DNA helicase complex. Hence, Cdc45 may play an important role in elongation of DNA replication by bridging the processive DNA polymerases δ δ δ δ and ε ε ε ε with the replicative helicase in the elongating machinery.
The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase of the cell cycle. RNA interference-mediated depletion of SMC1 sensitized HeLa cells to X-rays. Repair of radiation-induced DNA double-strand breaks, measured by γH2AX/53BP1 foci analysis, was slower in SMC1- or Rad21-depleted cells than in controls in G2 but not in G1. Inhibition of the DNA damage kinase DNA-PK, but not ATM, further inhibited foci loss in cohesin-depleted cells in G2. SMC1 depletion had no effect on DNA single-strand break repair in either G1 or late S/G2. Rad21 and SMC1 were recruited to sites of X-ray-induced DNA damage in G2-phase cells, but not in G1, and only when DNA damage was concentrated in subnuclear stripes, generated by partially shielded ultrasoft X-rays. Our results suggest that the cohesin complex contributes to cell survival by promoting the repair of radiation-induced DNA double-strand breaks in G2-phase cells in an ATM-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.