BackgroundWe describe intratumoral injection of a slow-release emulsion of killed mycobacteria (complete Freund’s adjuvant (CFA)) in three preclinical species and in human cancer patients.MethodsEfficacy and safety were tested in mammary tumors in mice, in mastocytomas in mice and dogs, and in equine melanomas. In mice, survival, tumor growth, and tumor infiltration by six immune cell subsets (by flow cytometry) were investigated and analyzed using Cox proportional hazards, a random slopes model, and a full factorial model, respectively. Tumor growth and histology were investigated in dogs and horses, as well as survival and tumor immunohistochemistry in dogs. Tumor biopsies were taken from human cancer patients on day 5 (all patients) and day 28 (some patients) of treatment and analyzed by histology. CT scans are provided from one patient.ResultsSignificantly extended survival was observed in mouse P815 and 4T1 tumor models. Complete tumor regressions were observed in all three non-human species (6/186 (3%) of mouse mastocytomas; 3/14 (21%) of canine mastocytomas and 2/11 (18%) of equine melanomas). Evidence of systemic immune responses (regression of non-injected metastases) was also observed. Analysis of immune cells infiltrating mastocytoma tumors in mice showed that early neutrophil infiltration was predictive of treatment benefit. Analysis of the site of mastocytoma regression in dogs weeks or months after treatment demonstrated increased B and T cell infiltrates. Thus, activation of the innate immune system alone may be sufficient for regression of some injected tumors, followed by activation of the acquired immune system which can mediate regression of non-injected metastases. Finally, we report on the use of CFA in 12 human cancer patients. Treatment was well tolerated. CT scans showing tumor regression in a patient with late-stage renal cancer are provided.ConclusionOur data demonstrate that intratumoral injection of CFA has major antitumor effects in a proportion of treated animals and is safe for use in human cancer patients. Further trials in human cancer patients are therefore warranted. Our novel treatment provides a simple and inexpensive cancer immunotherapy, immediately applicable to a wide range of solid tumors, and is suitable to patients in developing countries and advanced care settings.
Povidone-iodine (PVP-I) inactivates a broad range of pathogens. Despite its widespread use over decades, the safety of PVP-I remains controversial. Its extended use in the current SARS-CoV-2 virus pandemic urges the need to clarify safety features of PVP-I on a cellular level. Our investigation in epithelial, mesothelial, endothelial, and innate immune cells revealed that the toxicity of PVP-I is caused by diatomic iodine (I2), which is rapidly released from PVP-I to fuel organic halogenation with fast first-order kinetics. Eukaryotic toxicity manifests at below clinically used concentrations with a threshold of 0.1% PVP-I (wt/vol), equalling 1 mM of total available I2. Above this threshold, membrane disruption, loss of mitochondrial membrane potential, and abolition of oxidative phosphorylation induce a rapid form of cell death we propose to term iodoptosis. Furthermore, PVP-I attacks lipid rafts, leading to the failure of tight junctions and thereby compromising the barrier functions of surface-lining cells. Thus, the therapeutic window of PVP-I is considerably narrower than commonly believed. Our findings urge the reappraisal of PVP-I in clinical practice to avert unwarranted toxicity whilst safeguarding its benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.