Abstract. Mating systems in plants are known to be highly labile traits, with frequent transitions from outcrossing to selfing. The genetic basis for breakdown in self-incompatibility (SI) systems has been studied, but data on variation in selfing rates in species for which the molecular basis of SI is known are rare. This study surveyed such variation in Arabidopsis lyrata (Brassicaceae), which is often considered an obligately outcrossing species, to examine the causes and genetic consequences of changes in its breeding system. Based on controlled self-pollinations in the greenhouse, three populations from the Great Lakes region of North America included a minority of self-compatible (SC) individuals, while two showed larger proportions of SC individuals and all populations contained some individuals capable of setting selfed seeds. Loss of SI was not associated with particular haplotypes at the S-locus (as estimated by alleles amplified at the SRK locus, the gene controlling female specificity) and all populations contained similar numbers of SRK alleles, suggesting that some other genetic factor is responsible for modifying the SI reaction. The loss of SI has resulted in an effective shift in the mating system, as the two populations with a high frequency of SC individuals showed significantly lower microsatellite-based multilocus outcrossing rates and higher inbreeding coefficients than the other populations. Based on microsatellites, observed heterozygosities and genetic diversity were also significantly depressed in these populations. These findings provide the unique opportunity to examine in detail the consequences of mating system changes within a species with a well-characterized SI system. Key words. Arabidopsis lyrata, genetic diversity, heterozygosity, mating system variation, microsatellites, self-incompatibility breakdown, SRK. The evolutionary dynamics of flowering plant mating systems has been the subject of much interest for many years, but numerous questions remain about the forces that influence changes in levels of inbreeding and the consequences of such changes. Loss of self-incompatibility (SI) is a frequent evolutionary transition at the level of species (Weller and Sakai 1999) but intermediate levels of self-fertilization may also be maintained within species (Baker 1959;Lloyd 1979;Schemske and Lande 1985;Eckert and Barrett 1994). Even in plants with genetically controlled mechanisms to prevent inbreeding (i.e., SI systems), variation in the strength of SI has long been noted (Jones 1963;Watts 1963;Levin 1996;Good-Avila and Stephenson 2002, 2003). The genetic consequences of variation in mating systems (i.e., quantifying the expected loss of genetic diversity with increased levels of inbreeding) has been assessed within and between species for some groups with known SI systems (e.g., Lloyd 1967; Ockendon and Currah 1979; Mulcahy and Mulcahy 1983; Lyons and Antonovics 1991; Charlesworth and Yang 1998; Liu et al. 1998;Liu et al. 1999;Wright et al. 2002Wright et al. , 2003Busch 2005), but ...
In bacteria, small RNAs (sRNAs) make important regulatory contributions to an ever increasing number of cellular processes. To expand the repertoire of known sRNAs, we sought to identify novel sRNAs in the differentiating, multicellular bacterium Streptomyces coelicolor. We describe a combined bioinformatic and experimental approach that enabled the identification and characterization of nine novel sRNAs in S. coelicolor, including a cis-encoded antisense sRNA. We examined sRNA expression throughout the S. coelicolor developmental cycle, which progresses from vegetative mycelium formation, to aerial mycelium formation and finally sporulation. We further determined the effects of growth medium composition (rich versus minimal medium) on sRNA gene expression, and compared wild-type sRNA expression profiles with those of four developmental mutants. All but two of the sRNAs exhibited some degree of medium dependence, with three sRNAs being expressed exclusively during growth on one medium type. Unlike most sRNAs characterized thus far, several sRNA genes in S. coelicolor were expressed constitutively (apart from during late sporulation), suggesting a possible housekeeping role for these transcripts. Others were expressed at specific developmental stages, and their expression profiles were altered in response to developmental mutations. Expression of one sRNA in particular was dependent upon the sporulation-specific sigma factor σWhiG.
An efficient analytical method utilizing high-performance liquid chromatography (HPLC)/evaporative light scattering detector (ELSD) was developed to isolate and quantify the two major soyasaponin aglycones or precursors in soybeans, triterpene soyasapogenol A and B. Soaking of seeds in water up to 15 h did not change the content of soyasapogenols. Seed germination had no influence on soyasapogenol A content but increased the accumulation of soyasapogenol B. Soyasapogenols were mainly concentrated in the axis of the seeds as compared with the cotyledons and seed coat. In the seedling, the root (radicle) contained the highest concentration of soyasapogenol A, while the plumule had the greatest amounts of soyasapogenol B. In 10 advanced food-grade soybean cultivars grown in four locations in Ontario, total soyasapogenol content in soybeans was 2 +/- 0.3 mg/g. Soyasapogenol B content (1.5 +/- 0.27 mg/g) was 2.5-4.5-fold higher than soyasapogenol A content (0.49 +/- 0.1 mg/g). A significant variation in soyasapogenol content was observed among cultivars and growing locations. There was no significant correlation between the content of soyasapogenols and the total isoflavone aglycones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.