Due to their specific properties and pharmacokinetics, nanomedicinal products (NMPs) may present different toxicity and side effects compared to non-nanoformulated, conventional medicines. To facilitate the safety assessment of NMPs, we aimed to gain insight into toxic effects specific for NMPs by systematically analyzing the available toxicity data on approved NMPs in the European Union. In addition, by comparing five sets of products with the same active pharmaceutical ingredient (API) in a conventional formulation versus a nanoformulation, we aimed to identify any side effects specific for the nano aspect of NMPs. The objective was to investigate whether specific toxicity could be related to certain structural types of NMPs and whether a nanoformulation of an API altered the nature of side effects of the product in humans compared to a conventional formulation. The survey of toxicity data did not reveal nanospecific toxicity that could be related to certain types of structures of NMPs, other than those reported previously in relation to accumulation of iron nanoparticles (NPs). However, given the limited data for some of the product groups or toxicological end points in the analysis, conclusions with regard to (a lack of) potential nanomedicine-specific effects need to be considered carefully. Results from the comparison of side effects of five sets of drugs (mainly liposomes and/or cytostatics) confirmed the induction of pseudo-allergic responses associated with specific NMPs in the literature, in addition to the side effects common to both nanoformulations and regular formulations, eg, with liposomal doxorubicin, and possibly liposomal daunorubicin. Based on the available data, immunotoxicological effects of certain NMPs cannot be excluded, and we conclude that this end point requires further attention.
Human health risks by silver nanoparticle (AgNP) exposure are likely to increase due to the increasing number of NP-containing products and demonstrated adverse effects in various cell lines. Unfortunately, results from (toxicity) studies are often based on exposure dose and are often measured only at a fixed time point. NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Macrophages are the first line of defense against invading foreign agents including NPs. How macrophages deal with the particles is essential for potential toxicity of the NPs. However, there is a considerable lack of uptake studies of particles in the nanometer range and macrophage-like cells. Therefore, uptake rates were determined over 24 h for three different AgNPs sizes (20, 50 and 75 nm) in medium with and without fetal calf serum. Non-toxic concentrations of 10 ng Ag/mL for monocytic THP-1 cells, representing realistic exposure concentration for short-term exposures, were chosen. The uptake of Ag was higher in medium without fetal calf serum and showed increasing uptake for decreasing NP sizes, both on NP mass and on number basis. Internal cellular concentrations reached roughly 32/10 %, 25/18 % and 21/15 % of the nominal concentration in the absence of fetal calf serum/with fetal calf serum for 20-, 50- and 75-nm NPs, respectively. Our research shows that uptake kinetics in macrophages differ for various NP sizes. To increase the understanding of the mechanism of NP toxicity in cells, the process of uptake (timing) should be considered.Electronic supplementary materialThe online version of this article (doi:10.1007/s11051-016-3595-7) contains supplementary material, which is available to authorized users.
Nanomaterials (NMs) are attractive for biomedical and pharmaceutical applications because of their unique physicochemical and biological properties. A major application area of NMs is drug delivery. Many nanomedicinal products (NMPs) currently on the market or in clinical trials are most often based on liposomal products or polymer conjugates. NMPs can be designed to target specific tissues, eg, tumors. In virtually all cases, NMPs will eventually reach the immune system. It has been shown that most NMs end up in organs of the mononuclear phagocytic system, notably liver and spleen. Adverse immune effects, including allergy, hypersensitivity, and immunosuppression, have been reported after NMP administration. Interactions of NMPs with the immune system may therefore constitute important side effects. Currently, no regulatory documents are specifically dedicated to evaluate the immunotoxicity of NMs or NMPs. Their immunotoxicity assessment is performed based on existing guidelines for conventional substances or medicinal products. Due to the unique properties of NMPs when compared with conventional medicinal products, it is uncertain whether the currently prescribed set of tests provides sufficient information for an adequate evaluation of potential immunotoxicity of NMPs. The aim of this study was therefore, to compare the current regulatory immunotoxicity testing requirements with the accumulating knowledge on immunotoxic effects of NMPs in order to identify potential gaps in the safety assessment. This comparison showed that immunotoxic effects, such as complement activation-related pseudoallergy, myelosuppression, inflammasome activation, and hypersensitivity, are not readily detected by using current testing guidelines. Immunotoxicity of NMPs would be more accurately evaluated by an expanded testing strategy that is equipped to stratify applicable testing for the various types of NMPs.
The increasing number of nanotechnology products on the market poses increasing human health risks by particle exposures. Adverse effects of silver nanoparticles (AgNPs) in various cell lines have been measured based on exposure dose after a fixed time point, but NP uptake kinetics and the time-dependent internal cellular concentration are often not considered. Even though knowledge about relevant timescales for NP uptake is essential, e.g. for time- and cost-effective risk assessment through modelling, insufficient data are available. Therefore, the authors examined uptake rates for three different AgNP sizes (20, 50 and 75 nm) and two tissue culture medium compositions (with and without foetal calf serum, FCS) under realistic exposure concentrations in pulmonary epithelial 16HBE14o-cells. The quantification of Ag in cells was carried out by high-resolution inductively coupled plasma mass spectrometry. We show for the first time that uptake kinetics of AgNPs into 16HBE14o-cells was highly influenced by medium composition. Uptake into cells was higher in medium without FCS, reaching approximately twice the concentration after 24 h than in medium supplemented with FCS, showing highest uptake for 50-nm AgNPs when expressed on a mass basis. This optimum shifts to 20 nm on a number basis, stressing the importance of the measurand in which results are presented. The importance of our research identifies that not just the uptake after a certain time point should be considered as dose but also the process of uptake (timing) might need to be considered when studying the mechanism of toxicity of nanoparticles.Electronic supplementary materialThe online version of this article (doi:10.1007/s11051-016-3493-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.