Recently, the term MSCRAMM (microbial surface components recognizing adhesive matrix molecules), has been introduced to describe microbial molecules that recognize extracellular matrix (ECM) [1]. Here we present evidence for the presence of fibronectin-binding molecules in Borrelia burgdorferi and several other Borrelia species. Immunofluorescence studies show that plasma fibronectin is bound uniformly over the cell surface of free swimming B. burgdorferi. In addition, the spirochetes are able to bind to plasma fibronectin-coated microwell plates, an interaction that is inhibited by anti-fibronectin antibody as well as exogenous plasma fibronectin. Taken together, the data suggest that fibronectin binds to the surface of the spirochete. On Western blot-like assays, B. burgdorferi and some B. afzelii strains express a major fibronectin-binding protein (Fn-BA) with an approximate molecular mass of 52 kDa. In addition, several other major Fn-BAs were found in B. hermsii (26, 31, 33, 39, 46, 54 and 58 kDa) and B. turicatae (39, 41, 45, 50, 56, 59 and 66 kDa). Preliminary evidence suggests that fibronectin (and Fn-BA) may play a role as a molecular bridge between the spirochete and other components of the extracellular matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.