Hypertrophic cardiomyopathy (HCM) is associated with cardiac hypertrophy, diastolic dysfunction, and sudden death. Recently, it has been suggested that inefficient energy utilization could be a common molecular pathway of HCM-related mutations. We have previously generated transgenic Sprague-Dawley rats overexpressing a truncated cardiac troponin T (DEL-TNT) molecule, displaying typical features of HCM such as diastolic dysfunction and an increased susceptibility to ventricular arrhythmias. We now studied these rats using 31P magnetic resonance spectroscopy (MRS). MRS demonstrated that cardiac energy metabolism was markedly impaired, as indicated by a decreased phosphocreatine to ATP ratio (-31%, p < 0.05). In addition, we assessed contractility of isolated cardiomyocytes. While DEL-TNT and control cardiomyocytes showed no difference under baseline conditions, DEL-TNT cardiomyocytes selectively exhibited a decrease in fractional shortening by 28% after 1 h in glucose-deprived medium (p < 0.05). Moreover, significant decreases in contraction velocity and relaxation velocity were observed. To identify the underlying molecular pathways, we performed transcriptional profiling using real-time PCR. DEL-TNT hearts exhibited induction of several genes critical for cardiac energy supply, including CD36, CPT-1/-2, and PGC-1alpha. Finally, DEL-TNT rats and controls were studied by radiotelemetry after being stressed by isoproterenol, revealing a significantly increased frequency of arrhythmias in transgenic animals. In summary, we demonstrate profound energetic alterations in DEL-TNT hearts, supporting the notion that inefficient cellular ATP utilization contributes to the pathogenesis of HCM.
This study investigated (i) blood pressure (BP), heart rate (HR), and their relation to urinary NOx and eNOS protein expression in male and female spontaneously hypertensive rats (SHR), as well as (ii) gender-dependent cardiovascular effects of nebivolol (NEB) in comparison to metoprolol (MET) in SHR. BP and HR were measured telemetrically after a single intraperitoneal application of NEB or MET at 07.00 and 19.00 h in male rats and at 19.00 h in proestrus female rats. The two beta-blockers varied in time of decreasing BP and HR and also in duration. In males, MET decreased BP and HR for few hours exclusively when applied at the onset of the activity phase (i.e., at 19.00 h), while after its application at 07.00 h, BP and HR were unchanged. In females, MET also caused a short-lasting BP and HR reduction, with the effect being more pronounced than in males. In males, NEB at either dosing time decreased HR and BP to a greater extent than did MET. This effect was evident both during the activity and rest periods and persisted for at least five days. In females, NEB provoked a similar, but more pronounced, effect on BP and HR in comparison to males. These findings demonstrate that significant gender-dependent differences in the circadian profile of BP and HR exist. BP and urinary NOx as well as eNOS expression are inversely correlated, and the cardiovascular effects of NEB and MET vary, depending on the time of application as well as gender.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.