Cardiac troponin I was elevated in 85% of patients with sepsis, septic shock or SIRS in our study. A high percentage showed infection caused by S. pneumoniae. In what way microorganisms cause cTnI elevations is not yet understood.
Background-Living autologous vascular grafts with the capacity for regeneration and growth may overcome the limitations of contemporary artificial prostheses. Particularly in congenital cardiovascular surgery, there is an unmet medical need for growing replacement materials. Here we investigate growth capacity of tissue-engineered living pulmonary arteries in a growing lamb model. Methods and Results-Vascular grafts fabricated from biodegradable scaffolds (ID 18Ϯl mm) were sequentially seeded with vascular cells. The seeded constructs were grown in vitro for 21days using biomimetic conditions. Thereafter, these tissue-engineered vascular grafts (TEVGs) were surgically implanted as main pulmonary artery replacements in 14 lambs using cardiopulmonary bypass and followed up for Յ100 weeks. The animals more than doubled their body weight during the 2-year period. The TEVG showed good functional performance demonstrated by regular echocardiography at 20, 50, 80, and 100 weeks and computed tomography-angiography. In particular, there was no evidence of thrombus, calcification, stenosis, suture dehiscence, or aneurysm. There was a significant increase in diameter by 30% and length by 45%. Histology showed tissue formation reminiscent of native artery. Biochemical analysis revealed cellularity and proteoglycans and increased collagen contents in all of the groups, analogous to those of native vessels. The mechanical profiles of the TEVG showed stronger but less elastic tissue properties than native pulmonary arteries.
Conclusions-This
The results demonstrate the significance of large strains in promoting tissue formation. This study may provide a methodological basis for tissue engineering of heart valves appropriate for systemic pressure applications.
Purpose
To describe the perfusion patterns of peripheral pulmonary granulomatous lesions (PPGLs) by contrast‐enhanced ultrasound (CEUS) and their correlation with vascularization patterns (VPs) represented by immunohistochemical (CD34) endothelial staining.
Patients and methods
From January 2007 until September 2020, 10 consecutive patients with histologically confirmed PPGLs were investigated by CEUS. The time to enhancement, classified as early pulmonary‐arterial (PA) pattern of enhancement versus delayed bronchial‐arterial (BA) pattern of enhancement, the extent of enhancement, classified as marked or reduced, the homogeneity of enhancement, classified as homogeneous or inhomogeneous, and the decrease of enhancement, classified as rapid washout (<120 seconds) or a late washout (≥120 seconds), were analyzed retrospectively. Furthermore, the tissue samples from the study patients and as a control group, 10 samples of normal lung tissue obtained by autopsy, and 10 samples of lung tissue with acute pneumonia obtained by autopsy were immunohistochemically stained with CD34 antibody. The presence of avascular areas (AAs) and the VPs were evaluated in all tissue samples.
Results
On CEUS, all PPGLs showed a reduced inhomogeneous BA pattern of enhancement and a rapid washout (<120 seconds). On CD34 staining, all PPGLs showed central AAs in granulomas and a chaotic VP similar to angiogenesis in lung tumors. The lung tissue in control groups revealed on CD34 staining a regular alveolar VP.
Conclusion
The PPGLs on CEUS show an identical perfusion pattern similar to those of malignant lesions. Furthermore, for the first time, neoangiogenesis was demonstrated as a histopathological correlate to BA pattern of enhancement on CEUS.
The prevalence of chronic wounds is closely correlated to the aging population and so-called civilizational diseases. Therefore, they are causing morbidity and mortality of millions of patients worldwide, with an unbroken upward trend. As a consequence, chronic wounds induce enormous and rapidly growing costs for our health care systems and society in general. Thus, medically effective and cost-efficient treatment methods are urgently needed. Methods of ‘regenerative medicine’ might offer innovative scientific solutions, including the use of stem cells, growth factors and new bioactive materials. These tools are experimentally well described but clinically poorly performed. The main reasons for this are both legislative and economic. This review describes state-of-the-art techniques, up-to-date research projects, innovative preclinical and clinical approaches in wound care, and activities to translate these innovative techniques into clinical routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.