The prognosis for patients suffering from cardiovascular and many other diseases can be substantially improved if diagnosed at an early stage. High performance diagnostic testing using disposable microfluidic chips can provide a platform for realizing this vision. Amic AB (Uppsala, Sweden) has developed a new microfluidic test chip for sandwich immunoassays fabricated by injection molding of the cycloolefin-copolymer Zeonor. A highly ordered array of micropillars within the fluidic chip distributes the sample solution by capillary action. Since wetting of the pillar array surface is the only driving force for liquid distribution precise control of the surface chemistry is crucial. In this work we demonstrate a novel protocol for surface hydrophilization and antibody immobilization on cycloolefin-copolymer test chips, based on direct silanisation of the thermoplastic substrate. Dextran is subsequently covalently coupled to amino groups, thus providing a coating with a low contact angle suitable for antibody immobilization. The contact angle of dextran coated chips is stable for at least two months, which enables production of large batches that can be stored for extended periods of time. We demonstrate the utility of the presented platform and surface chemistry in a C-reactive protein assay with a detection limit of 2.6 ng ml(-1), a dynamic range of 10(2) and a coefficient of variance of 15%.
The topic of shedding of micro-sized polymeric particles, so called microplastics, from textiles has been covered by an increasing number of studies over the past years. However, the methods with which the shedding of microplastics from textiles has been measured so far has shown a large variation. Consequently, the results regarding the amount of shed particles also vary, from 120 to 728,289 particles from similar garments in recent studies. This article presents research enabling for identification of whether the shedding of microplastics from different types of fabric was dependent on construction parameters. As none of the methods in the existing literature could be used for evaluating shedding of microplastics from textiles, a method was developed for this purpose. The resulting final method is described in this paper as well as the work with minimizing the error sources and consequently the standard deviation of the results through selection of material samples, equipment and procedure for sample preparation, washing, filtering the washing water and analyzing the shed microplastics. Comparing the environmental load of different garments, or identifying improvement possibilities in garment construction are two examples of how the method can be utilized.
The quantity and composition of fibers released from functional textiles during accelerated washing were investigated using the GyroWash method. Two fabrics [polyamide (PA) and polyester/cotton (PES/CO)] were selected and coated with perfluorohexane-based side-chain fluorinated polymers. Fibers released during washing ranged from ∼10 to 500 μ with a similar distribution for the two textile types. The PA-based fabric released considerably more fibers >20 μm in length compared to the PES/CO-based fabric (>1000/ GyroWash for PA vs ∼200/GyroWash fibers for PES/CO). After one GyroWash (2−15 domestic washes), fibers that contained approximately 240 and 1300 μg total fluorine per square meter (μg F/m 2 ) were released from the PA and PES/CO fabrics, respectively. Current understanding of the fate of microplastic fibers suggests that a large fraction of these fibers reach the environment either in effluent wastewater or sewage sludge applied to land. In the environment, the fluorinated side chains will be slowly cleaved from the backbone of the side-chain fluorinated polymers coated on the fibers and then transformed into short-chain perfluoroalkyl acids. On the European scale, emissions of up to ∼0.7 t of fluorotelomer alcohol (6:2 FTOH) per year were estimated for outdoor rain jackets treated with fluorotelomerbased side-chain fluorinated polymers.
ical-assisted depolymerization of plastics so far only works for polyethylene terephthalate, with degradation of a few other relevant synthetic polymer chains being reported. In contrast, by analyzing market data and emerging trends for synthetic fibers in the textile industry, in combination with numbers from used garment collection and sorting plants, it was shown that the use of difficult-to-recycle blended materials is rapidly growing. If the lack of recycling technology and production trend for fiber blends remains, a volume of more than 3400 Mt of waste will have been accumulated by 2030. This work highlights the urgent need to transform the textile industry from a biocatalytic perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.