Cystic fibrosis (CF) patients often have reduced mass and strength of skeletal muscles, including the diaphragm, the primary muscle of respiration. Here we show that lack of the CF transmembrane conductance regulator (CFTR) plays an intrinsic role in skeletal muscle atrophy and dysfunction. In normal murine and human skeletal muscle, CFTR is expressed and co-localized with sarcoplasmic reticulum-associated proteins. CFTR–deficient myotubes exhibit augmented levels of intracellular calcium after KCl-induced depolarization, and exposure to an inflammatory milieu induces excessive NF-kB translocation and cytokine/chemokine gene upregulation. To determine the effects of an inflammatory environment in vivo, sustained pulmonary infection with Pseudomonas aeruginosa was produced, and under these conditions diaphragmatic force-generating capacity is selectively reduced in Cftr −/− mice. This is associated with exaggerated pro-inflammatory cytokine expression as well as upregulation of the E3 ubiquitin ligases (MuRF1 and atrogin-1) involved in muscle atrophy. We conclude that an intrinsic alteration of function is linked to the absence of CFTR from skeletal muscle, leading to dysregulated calcium homeostasis, augmented inflammatory/atrophic gene expression signatures, and increased diaphragmatic weakness during pulmonary infection. These findings reveal a previously unrecognized role for CFTR in skeletal muscle function that may have major implications for the pathogenesis of cachexia and respiratory muscle pump failure in CF patients.
Thoracic radiotherapy may produce the morbidity-associated lung responses of alveolitis or fibrosing alveolitis in treated cancer patients. The genetic factors that influence a patient's likelihood of developing alveolitis and the relationship of this inflammatory response to the development of fibrosis are largely unknown. Herein we use genetic mapping to identify radiation-induced lung response susceptibility loci in reciprocal backcross mice bred from C3H/HeJ (alveolitis response) and C57BL/6J ( fibrosing alveolitis/fibrosis response) strains. Mice were treated with 18-Gy whole thorax irradiation and their survival, lung histopathology, and bronchoalveolar lavage cell types were recorded. A genome-wide scan was completed using 139 markers. The C3H/HeJ alveolitis response included mast cell infiltration and increased neutrophil numbers in the lavage compared with the level in the C57BL/6J strain, which developed fibrosis. In backcross mice, posttreatment survival was dictated by the development of an alveolitis response with increased mast cell, bronchoalveolar lavage total cell, and neutrophil numbers. Fibrosis was measured only in a subset of mice developing alveolitis and, in these mice, was associated with neutrophil count. Genotyping revealed coinheritance of C3H alleles (chromosomes 2, 4, 19, and X) and C57BL/6J alleles (chromosomes 1, 7, 9, and 17) to result in higher fibrosis scores in backcross mice. Mice that inherited C57BL/6J alleles at the putative alveolitis susceptibility loci were spared this response and lived to the end of the experiment. In this animal model, independent loci control the development of alveolitis from fibrosis, whereas fibrosing alveolitis occurs with the coinheritance of these factors.
Persistent osteopenia and structural abnormalities in adult Cftr(-/-) mice, in the absence of overt respiratory and gastrointestinal disease, suggest that loss of Cftr function has a direct impact on bone metabolism in Cftr(-/-) mice that is not sex specific or subject to haplotype insufficiency.
Patients with cystic fibrosis (CF) suffer from asthma-like symptoms and gastrointestinal cramps, attributed to a mutation in the CF transmembrane conductance regulator (CFTR) gene present in a variety of cells. Pulmonary manifestations of the disease include the production of thickened mucus and symptoms of asthma, such as cough and wheezing. A possible alteration in airway smooth muscle (ASM) cell function of patients with CF has not been investigated. The aim of this study was to determine whether the (CFTR) channel is present and affects function of human ASM cells. Cell cultures were obtained from the main or lobar bronchi of patients with and without CF, and the presence of the CFTR channel detected by immunofluorescence. Cytosolic Ca(2+) was measured using Fura-2 and dual-wavelength microfluorimetry. The results show that CFTR is expressed in airway bronchial tissue and in cultured ASM cells. Peak Ca(2+) release in response to histamine was significantly decreased in CF cells compared with non-CF ASM cells (357 +/- 53 nM versus 558 +/- 20 nM; P < 0.001). The CFTR pharmacological blockers, glibenclamide and N-phenyl anthranilic acid, significantly reduced histamine-induced Ca(2+) release in non-CF cells, and similar results were obtained when CFTR expression was varied using antisense oligonucleotides. In conclusion, these data show that the CFTR channel is present in ASM cells, and that it modulates the release of Ca(2+) in response to contractile agents. In patients with CF, a dysfunctional CFTR channel could contribute to the asthma diathesis and gastrointestinal problems experienced by these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.