Substitution of the C2-OH group by C2-H at 4-nitrophenyl-beta-d-galactopyranoside to give 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside causes (1) a change in the rate-determining step for beta-galactosidase-catalyzed sugar hydrolysis from formation to breakdown of a covalent intermediate; (2) a 14 000-fold decrease in the second-order rate constant k(3)/K(d) for enzyme-catalyzed transfer of the beta-d-galactopyranosyl group from the substrate to form a covalent adduct to the enzyme; and (3) a larger 320 000-fold decrease in the first-order rate constant k(s) for hydrolysis of this covalent adduct. Only a small fraction (ca. 7%) of the 2-OH substituent effect is expressed in the ground-state Michaelis complex, so that the (apparent) strong interactions between the enzyme and 2-OH group that stabilize the transition state for beta-d-galactopyranosyl transfer only develop upon moving from the Michaelis complex to the transition state. Mg(2+) activates beta-galactosidase for cleavage of both 4-nitrophenyl-beta-d-galactopyranoside and 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside. This suggests that Mg(2+) activation does not involve interactions with the 2-OH group. The removal of Mg(2+) from beta-galactosidase causes a change in the rate-determining step for enzyme-catalyzed hydrolysis of 4-nitrophenyl-2-deoxy-beta-d-galactopyranoside from breakdown to formation of the covalent intermediate. The observed 2-OH effect would require a very large (10-11 kcal/mol) stabilization of the transition state for beta-d-galactopyranosyl group transfer to water by interactions between beta-galactosidase and the neutral 2-OH group. We suggest that the apparent effect of the neutral substituent is more simply rationalized by ionization of the 2-OH to form a 2-O(-) anion, which provides effective electrostatic stabilization of the cationic transition state for glycoside cleavage at an active site of relatively low dielectric constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.