The
singlet fission (SF) process is generally defined as the conversion
of one singlet exciton (S1) into two triplet excitons (2·T1), which has the potential to overcome thermalization losses
in the field of photovoltaic devices. Among the applicable compounds
for SF-based photovoltaic devices, perylene bisimide (PBI) is one
of the best candidates because of its electronic tunability and photostability.
However, the strategy for efficient SF in PBIs remains ambiguous because
of numerous competing relaxation pathways in PBI-based molecular materials.
In this regard, for the first time, we observed the SF mechanism in
PBI dimers by controlling the intrinsic factor (exciton coupling)
and the external environment (solvent polarity and viscosity). Time-resolved
spectroscopic measurements and quantum chemical simulations reveal
that efficient SF occurs through the charge-transfer-assisted mechanism,
entailing a large structural fluctuation. Our findings not only highlight
the SF mechanism in PBI dimers but also suggest the factors responsible
for an efficient SF process, which are important considerations in
the design of molecular materials for photovoltaic devices.
Four well-defined π-stacks of perylene bisimide (PBI) dyes were obtained in solution by covalent linkage of two chromophores with spacer units of different length and sterical demand. Structural elucidation of the folda-dimers by in-depth nuclear magnetic resonance studies and geometry optimization at the level of density functional theory suggest different, but highly defined molecular arrangements of the two chromophores in the folded state enforced by the various spacer moieties. Remarkably, the dye stacks exhibit considerably different optical properties as investigated by UV/vis absorption and fluorescence spectroscopy, despite only slightly different chromophore arrangements. The distinct absorption properties can be rationalized by an interplay of long- and short-range exciton coupling resulting in optical signatures ranging from conventional H-type to monomer like absorption features with low and appreciably high fluorescence quantum yields, respectively. To the best of our knowledge, we present the first experimental proof of a PBI-based "null-aggregate", in which long- and short-range exciton coupling fully compensate each other, giving rise to monomer-like absorption features for a stack of two PBI chromophores. Hence, our insights pinpoint the importance of charge-transfer mediated short-range coupling that can significantly influence the optical properties of PBI π-stacks.
An adequately designed, bay-tethered perylene bisimide (PBI) dimer Bis-PBI was synthesized by Pd/Cu-catalyzed Glaser-type oxidative homocoupling of the respective PBI building block. This newly synthesized PBI dimer self-assembles exclusively and with high binding constants of up to 10 M into a discrete π-stack of four chromophores. Steady-state absorption and emission spectra show the signatures of H-type excitonic coupling among the dye units. Broadband fluorescence upconversion spectroscopy (FLUPS) reveals an ultrafast dynamics in the optically excited state. An initially coherent Frenkel exciton state that is delocalized over the whole quadruple stack rapidly (τ = ∼200 fs) loses its coherence and relaxes into an excimer state. Comparison with Frenkel exciton dynamics in PBI dimeric and oligomeric H-aggregates demonstrates that in the quadruple stack coherent exciton propagation is absent due to its short length of aggregates, thereby it has only one relaxation pathway to the excimer state. Furthermore, the absence of pump-power dependence in transient absorption experiments suggests that multiexciton cannot be generated in the quadruple stack, which is in line with time-resolved fluorescence measurements.
A triad based on triarylamine donors, an iridium dipyrrin sensitiser and a naphthalene diimide acceptor is investigated using fs-pump-probe spectroscopy at two different pump wavelengths. Excitation of the naphthalene diimide induces a stepwise electron transfer process that yields within ca. 100 ps a charge separated state with 50-60% quantum yield in which one triarylamine is oxidised and the imide is reduced. Although being in the Marcus normal region, this state has a lifetime of 580 ns in MeCN. Excitation at the dipyrrin ligand centred absorption directly produces the charge separated state within ca. 1 ns however without formation of an intermediate. This pseudo-concerted two-electron transfer step was analysed with the help of a model dyad and a modified triad and is interpreted to be caused by inverted electron transfer rates. Although being much slower the latter process has a quantum yield of practically 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.