Glioblastoma Multiforme (GBM) is a highly prevalent and deadly brain malignancy characterized by poor prognosis and restricted disease management potential. Despite the success of nanocarrier systems to improve drug/gene therapy for cancer, active targeting specificity remains a major hurdle for GBM. Additionally, since the brain is a multi-cell type organ, there is a critical need to develop an approach to distinguish between GBM cells and healthy brain cells for safe and successful treatment. In this report, we have incorporated hyaluronic acid (HA) as an active targeting ligand for GBM. To do so, we employed HA conjugated liposomes (HALNPs) to study the uptake pathway in key cells in the brain including primary astrocytes, microglia, and human GBM cells. We observed that the HALNPs specifically target GBM cells over other brain cells due to higher expression of CD44 in tumor cells. Furthermore, CD44 driven HALNP uptake into GBM cells resulted in lysosomal evasion and increased efficacy of Doxorubicin, a model anti-neoplastic agent, while the astrocytes and microglia cells exhibited extensive HALNP-lysosome co-localization and decreased antineoplastic potency. In summary, novel CD44 targeted lipid based nanocarriers appear to be proficient in mediating site-specific delivery of drugs via CD44 receptors in GBM cells, with an improved therapeutic margin and safety.
Hexagonal boron nitride (h-BN) sheets possess an exclusive set of properties, including wide energy band gap, high optical transparency, high dielectric breakdown strength, high thermal conductivity, UV cathodoluminescence, and pronounced thermochemical stability. However, functionalization of large h-BN layers has remained a challenge due to their chemical resistance and unavailable molecular-binding sites. Here we report on the protonation of h-BN via treatment with chlorosulfonic acid that not only exfoliates "large" h-BNs (up to 10 000 μm) at high yields (∼23%) but also results in their covalent functionalization by introducing four forms of aminated nitrogen (N) sites within the h-BN lattice: sp-delocalized and sp-quaternary protonation on internal N sites (>N═ and >NH-) and pyridinic-like protonation on the edge N sites (═NH- and -NH-). The presence of these groups transforms the chemically passive h-BN sheets to their chemically active form, which as demonstrated here can be used as scaffolds for forming composites with plasmonic gold nanoparticles and organic dye molecules. The dispersion of h-BNs exhibits an optical energy band gap of 5.74 eV and a zeta potential of ζ = +36.25 mV at pH = 6.1 (ζ = +150 mV), confirming high dispersion stability. We envision that these two-dimensional nanomaterials with an atomically packed honeycomb lattice and high-energy band gap will evolve next-generation applications in controlled-UV emission, atomic-tunneling-barrier devices, ultrathin controlled-permeability membranes, and thermochemically resistive transparent coatings.
Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.
Mechanical properties of the cellular microenvironment induces astrogliosisin vitroin primary rat astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.