Cisplatin (cisPt), PtðNH 3 Þ 2 Cl 2 , is a cancer drug believed to kill cells via DNA binding and damage. Recent work has implied that the cellular copper (Cu) transport machinery may be involved in cisPt cell export and drug resistance. Normally, the Cu chaperone Atox1 binds Cu(I) via two cysteines and delivers the metal to metal-binding domains of ATP7B; the ATP7B domains then transfer the metal to the Golgi lumen for loading on cuproenzymes. Here, we use spectroscopic methods to test if cisPt interacts with purified Atox1 in solution in vitro. We find that cisPt binds to Atox1's metal-binding site regardless of the presence of Cu or not: When Cu is bound to Atox1, the near-UV circular dichroism signals indicate Cu-Pt interactions. From NMR data, it is evident that cisPt binds to the folded protein. CisPt-bound Atox1 is however not stable over time and the protein begins to unfold and aggregate. The reaction rates are limited by slow cisPt dechlorination. CisPt-induced unfolding of Atox1 is specific because this effect was not observed for two unrelated proteins that also bind cisPt. Our study demonstrates that Atox1 is a candidate for cisPt drug resistance: By binding to Atox1 in the cytoplasm, cisPt transport to DNA may be blocked. In agreement with this model, cell line studies demonstrate a correlation between Atox1 expression levels, and cisplatin resistance.
BackgroundPancreatic cancer shows a highly aggressive and infiltrative growth pattern and is characterized by an abundant tumor stroma known to interact with the cancer cells, and to influence tumor growth and drug resistance. Cancer cells actively take part in the production of extracellular matrix proteins, which then become deposited into the tumor stroma. Type IV collagen, an important component of the basement membrane, is highly expressed by pancreatic cancer cells both in vivo and in vitro. In this study, the cellular effects of type IV collagen produced by the cancer cells were characterized.MethodsThe expression of type IV collagen and its integrin receptors were examined in vivo in human pancreatic cancer tissue. The cellular effects of type IV collagen were studied in pancreatic cancer cell lines by reducing type IV collagen expression through RNA interference and by functional receptor blocking of integrins and their binding-sites on the type IV collagen molecule.ResultsWe show that type IV collagen is expressed close to the cancer cells in vivo, forming basement membrane like structures on the cancer cell surface that colocalize with the integrin receptors. Furthermore, the interaction between type IV collagen produced by the cancer cell, and integrins on the surface of the cancer cells, are important for continuous cancer cell growth, maintenance of a migratory phenotype, and for avoiding apoptosis.ConclusionWe show that type IV collagen provides essential cell survival signals to the pancreatic cancer cells through an autocrine loop.
BACKGROUND: Pancreas cancer is a dreaded disease with high mortality, despite progress in surgical and oncological treatments in recent years. The field is hampered by a lack of good prognostic and predictive tumour biomarkers to be used during follow-up of patients. METHODS: The circulating level of type IV collagen was measured by ELISA in pancreas cancer patients and controls. The expression pattern of type IV collagen in normal pancreas, pancreas cancer tissue and in pancreas cancer cell lines was studied by immunofluorescence and Western blot techniques. RESULTS: Patients with pancreas cancer have significantly increased circulating levels of type IV collagen. In pancreas cancer tissue high levels of type IV collagen expression was found in close proximity to cancer cells in the tumour stroma. Furthermore, pancreas cancer cells were found to produce and secrete type IV collagen in vitro, which in part can explain the high type IV collagen expression observed in pancreas cancer tissue, and the increased circulating levels in pancreas cancer patients. Of clinical importance, our results show that the circulating level of type IV collagen after surgery is strongly related to prognosis in patients treated for pancreas cancer by pancreatico-duodenectomy with curative intent. Persisting high levels of circulating type IV collagen after surgery indicates a quick relapse in disease and poor survival. CONCLUSION: Our results most importantly show that stroma related substances can be evaluated as potential cancer biomarkers, and thereby underline the importance of the tumour microenvironment also in this context.
Objectives:The aim of this research was to study whether plasma microRNAs (miRNA) can be used for early detection of pancreatic cancer (PC) by analyzing prediagnostic plasma samples collected before a PC diagnosis.Background:PC has a poor prognosis due to late presenting symptoms and early metastasis. Circulating miRNAs are altered in PC at diagnosis but have not been evaluated in a prediagnostic setting.Methods:We first performed an initial screen using a panel of 372 miRNAs in a retrospective case-control cohort that included early-stage PC patients and healthy controls. Significantly altered miRNAs at diagnosis were then measured in an early detection case-control cohort wherein plasma samples in the cases are collected before a PC diagnosis. Carbohydrate antigen 19–9 (Ca 19–9) levels were measured in all samples for comparison.Results:Our initial screen, including 23 stage I-II PC cases and 22 controls, revealed 15 candidate miRNAs that were differentially expressed in plasma samples at PC diagnosis. We combined all 15 miRNAs into a multivariate statistical model, which outperformed Ca 19–9 in receiver-operating characteristics analysis. However, none of the candidate miRNAs, individually or in combination, were significantly altered in prediagnostic plasma samples from 67 future PC patients compared with 132 matched controls. In comparison, Ca 19–9 levels were significantly higher in the cases at <5 years before diagnosis.Conclusion:Plasma miRNAs are altered in PC patients at diagnosis, but the candidate miRNAs found in this study appear late in the course of the disease and cannot be used for early detection of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.