In reptiles with temperature-dependent sex determination, gonadogenesis is initially directed by the incubation temperature of the egg during the middle third of embryonic development. The mechanism by which temperature is transduced into a sex-determining molecular signal remains a mystery, and here we examine the molecular network underlying sex determination in gonads in vitro. We use a whole organ culture system to show that expression of putative members of the sex-determining network (Dmrt1, Sox9, Mis, and FoxL2) are regulated by temperature endogenously within cells in the bipotential gonad and do not require other embryonic tissues to be expressed in a normal pattern in the red-eared slider turtle, Trachemys scripta. Furthermore, following a change in temperature, these factors exhibit temperature-responsive expression patterns that last for the duration of gonadogenesis. Finally, mosaic misexpression of a fusion Sox9 construct demonstrates the ability to functionally manipulate the gonad at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.