The purpose of our study was to investigate the role of endogenous p63RhoGEF in G(q/11)-dependent RhoA activation and signaling in rat aortic smooth muscle cells (RASMCs). Therefore, we studied the expression and subcellular localization in freshly isolated RASMCs and performed loss of function experiments to analyze its contribution to RhoGTPase activation and functional responses such as proliferation and contraction. By this, we could show that p63RhoGEF is endogenously expressed in RASMCs and acts there as the dominant mediator of the fast angiotensin II (ANG II)-dependent but not of the sphingosine-1-phosphate (S(1)P)-dependent RhoA activation. p63RhoGEF is not an activator of the concomitant Rac1 activation and functions independently of caveolae. The knockdown of endogenous p63RhoGEF significantly reduced the mitogenic response of ANG II, abolished ANG II-induced stress fiber formation and cell elongation in 2-D culture, and impaired the ANG II-driven contraction in a collagen-based 3-D model. In conclusion, our data provide for the first time evidence that p63RhoGEF is an important mediator of ANG II-dependent RhoA activation in RASMCs and therewith a leading actor in the subsequently triggered cellular processes, such as proliferation and contraction.
Cells can adapt to hypoxia by various mechanisms. Yet, hypoxia-induced effects on the cytoskeleton-based cell architecture and functions are largely unknown. Here we present a comprehensive analysis of the architecture and function of L929 fibroblasts under hypoxic conditions (1% O2). Cells cultivated in hypoxia showed striking morphological differences as compared to cells cultivated under normoxic conditions (20% O2). These changes include an enlargement of cell area and volume, increased numbers of focal contacts and loss of cell polarization. Furthermore the β- and γ-actin distribution is greatly altered. These hypoxic adjustments are associated with enhanced cell spreading and a decline of cell motility in wound closure and single cell motility assays. As the hypoxia-inducible factor-1α (HIF-1α) is stabilised in hypoxia and plays a pivotal role in the transcriptional response to changes in oxygen availability we used an shRNA-approach to examine the role of HIF-1α in cytoskeleton-related architecture and functions. We show that the observed increase in cell area, actin filament rearrangement, decrease of single cell migration in hypoxia and the maintenance of p-cofilin levels is dependent on HIF-1α stabilisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.