To reduce ultraviolet radiation (UVR) exposure during childhood, shade structures are being erected in primary schools to provide areas where children can more safely undertake outdoor activities. This study to evaluate the effectiveness of existing and purpose built shade structures in providing solar UVR protection was carried out on 29 such structures in 10 schools in New Zealand. Measurements of the direct and scattered solar UVR doses within the central region of the shade structures were made during the school lunch break period using UVR-sensitive polysulfone film badges. These measurements indicate that many of the structures had UVR protection factors (PF) of 4-8, which was sufficient to provide protection during the school lunch hour. However, of the 29 structures examined, only six would meet the suggested requirements of UVR PF greater than 15 required to provide all-day protection.
There is a paucity of theory guided longitudinal research into how carers of an adult with mental illness adapt to caregiving. This study examined changes in carer adjustment over 12 months and identified risk and protective factors using stress/coping theory. Eighty-seven carers completed questionnaires at Time 1 and 12 months later (Time 2). The risk/protective factors were background variables, coping resources, appraisals, and coping strategies. Adjustment outcomes were stable over 12 months. Stress/coping variables were associated with one or more Time 2 adjustment outcomes when controlling for initial adjustment and the direction of these associations were consistent with predictions. Findings support the application of stress/coping theory to guide identification of modifiable risk and protective factors associated with caregiver adjustment.
Providing effective shade in summer recreation spaces can reduce children's risk of skin cancer. This study explored the quantity and protective quality of shade in Wellington, New Zealand playgrounds. Two researchers visited 50 randomly selected playgrounds during peak ultraviolet radiation (UVR) hours in summer and recorded the mean shade cover of playground equipment, seats, tables and open areas. A solar meter was used to calculate the proportion of UVR blocked by each built structure and tree. The results found that 95% of playground equipment and 64% of sitting and eating areas had no shade protection. Trees blocked a mean of 80.1% (95% CI: 66.0-94.1) of direct solar UVR, but mostly covered open areas, not playground equipment, seats and tables. The findings demonstrate that Wellington playgrounds have insufficient shade available. Increased shade in Wellington playgrounds is urgently needed to protect children from harmful UVR exposure, particularly through planting trees with heavy foliage and building structures with large, protective roofing. This may well be the case for other regions of NZ and for other countries where UVR exposure is dangerous. The method used in this study provides a reliable means to evaluate shade.
Shade in public spaces can lower the risk of and sun burning and skin cancer. However, existing methods of auditing shade require travel between sites, and sunny weather conditions. This study aimed to evaluate the feasibility of free computer software-Google Earth-for assessing shade in urban open spaces. A shade projection method was developed that uses Google Earth street view and aerial images to estimate shade at solar noon on the summer solstice, irrespective of the date of image capture. Three researchers used the method to separately estimate shade cover over pre-defined activity areas in a sample of 45 New Zealand urban open spaces, including 24 playgrounds, 12 beaches and 9 outdoor pools. Outcome measures included method accuracy (assessed by comparison with a subsample of field observations of 10 of the settings) and inter-rater reliability. Of the 164 activity areas identified in the 45 settings, most (83%) had no shade cover. The method identified most activity areas in playgrounds (85%) and beaches (93%) and was accurate for assessing shade over these areas (predictive values of 100%). Only 8% of activity areas at outdoor pools were identified, due to a lack of street view images. Reliability for shade cover estimates was excellent (intraclass correlation coefficient of 0.97, 95% CI 0.97-0.98). Google Earth appears to be a reasonably accurate and reliable and shade audit tool for playgrounds and beaches. The findings are relevant for programmes focused on supporting the development of healthy urban open spaces.
To reduce ultraviolet radiation (UVR) exposure during childhood, shade structures are being erected in primary schools to provide areas where children can more safely undertake outdoor activities. This study to evaluate the effectiveness of existing and purpose built shade structures in providing solar UVR protection was carried out on 29 such structures in 10 schools in New Zealand. Measurements of the direct and scattered solar UVR doses within the central region of the shade structures were made during the school lunch break period using UVR‐sensitive polysulfone film badges. These measurements indicate that many of the structures had UVR protection factors (PF) of 4‐8, which was sufficient to provide protection during the school lunch hour. However, of the 29 structures examined, only six would meet the suggested requirements of UVR PF greater than 15 required to provide all‐day protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.