Intravenous (i.v.) injection of the endocannabinoid anandamide induces triphasic cardiovascular responses, including a pressor effect mediated via unknown central and peripheral mechanism(s). The aim of the present study was to determine the central mechanism(s) responsible for the pressor response to anandamide. For this purpose, the influence of antagonists at thromboxane A(2) TP (sulotroban, daltroban, SQ 29548), NMDA (MK-801) and beta(2)-adrenergic receptors (ICI 118551) on the pressor effect induced by i.v. and intracerebroventricularly (i.c.v.) administered anandamide was examined in urethane-anaesthetized rats. Anandamide (1.5-3 micromol/kg, i.v.) or its stable analogue methanandamide (0.75 micromol/kg, i.v.) increased blood pressure by 25%. Anandamide (0.03 mumol per animal i.c.v.) caused a pure pressor effect (by 20%) but only in the presence of antagonists of CB(1) and TRPV1 receptors. The effects of cannabinoids (i.v. or i.c.v.) were diminished by i.v. daltroban, sulotroban (10 mumol/kg each), and/or SQ 29548 (1 mumol/kg). The effect of anandamide i.v. was reduced by SQ 29548 (0.02 mumol per animal i.c.v.) and by the thromboxane A(2) synthesis inhibitor furegrelate i.c.v. (1.8 micromol per animal). ICI 118551, MK-801 (1 micromol/kg i.v. each), and bilateral adrenalectomy diminished the effect of anandamide i.c.v. Sulotroban (i.v.) failed to affect the response to anandamide (i.v.) in pithed rats, and anandamide and methanandamide did not bind to TP receptors in rat platelets. The present study suggests that central beta(2)-adrenergic, NMDA and thromboxane A(2) receptors are involved in the anandamide-induced adrenal secretion of catecholamines and their pressor effect in urethane-anaesthetized rats.
Different types of presynaptic inhibitory Gα(i/o) protein-coupled receptors usually do not act independently of each other but rather pre-activation of receptor X impairs the effect mediated via receptor Y. It is, however, unknown whether this interaction extends to the cannabinoid CB(1) receptor on cholinergic neurones and hence we studied whether its activation, pharmacological blockade, or genetic inactivation affects the function of other presynaptic inhibitory receptors. The electrically evoked acetylcholine or noradrenaline release was determined in superfused rodent tissues preincubated with (3)H-choline or (3)H-noradrenaline. The muscarinic M(2) receptor, Gα(i), and Gα(o) proteins were determined in hippocampal synaptosomes by Western blotting. Hippocampal anandamide and 2-arachidonoyl glycerol levels were determined by LC-MS/MS. The inhibitory effect of the muscarinic receptor agonist oxotremorine on acetylcholine release in hippocampal slices was increased by genetic CB(1) receptor ablation (mouse) and the CB(1) antagonist rimonabant (rat but not mouse) and decreased by a cannabinoid receptor agonist (mouse). In mouse tissues, CB(1) receptor ablation also increased the effect of a δ opioid receptor agonist on acetylcholine release in the hippocampus and the effect of oxotremorine on noradrenaline release in the vas deferens. CB(1) receptor ablation, to a very slight extent, increased Gα(o) protein levels without affecting either Gα(i) and M(2) receptor protein or the levels of anandamide and 2-arachidonoyl glycerol in the hippocampus. In conclusion, the CB(1) receptor shows an inhibitory interaction with the muscarinic and δ opioid receptor on cholinergic neurones in the rodent hippocampus and with the muscarinic receptor on noradrenergic neurones in the mouse vas deferens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.