Using femtosecond time-resolved photoelectron spectroscopy we demonstrate that photoexcitation transforms monoclinic VO 2 quasi-instantaneously into a metal. Thereby, we exclude an 80 fs structural bottleneck for the photoinduced electronic phase transition of VO 2 . First-principles many-body perturbation theory calculations reveal a high sensitivity of the VO 2 band gap to variations of the dynamically screened Coulomb interaction, supporting a fully electronically driven isostructural insulatorto-metal transition. We thus conclude that the ultrafast band structure renormalization is caused by photoexcitation of carriers from localized V 3d valence states, strongly changing the screening before significant hot-carrier relaxation or ionic motion has occurred. DOI: 10.1103/PhysRevLett.113.216401 PACS numbers: 71.27.+a, 71.20.Be, 71.30.+h, 79.60.-i Since its discovery in 1959 [1], studies of the VO 2 phase transition (PT) from a monoclinic (M 1 ) insulator (Fig. 1, top left) to a rutile (R) metal at T C ¼ 340 K (Fig. 1, top right) have revolved around the central question [2][3][4][5] of whether the crystallographic PT is the major cause for the electronic PT or if strong electron correlations are needed to explain the insulating low-T phase. While the M 1 structure is a necessary condition for the insulating state below T C , the existence of a monoclinic metal (mM) and its relevance to the thermally driven PT is under current investigation [6][7][8][9][10][11][12]. In particular, the role of carrier doping at temperatures close to T C by charge injection from the substrate or photoexcitation has been increasingly addressed [6,8,[13][14][15][16].One promising approach to disentangling the electronic and lattice contributions is to drive the PT nonthermally using ultrashort laser pulses in a pump-probe scheme. Time-resolved x-ray [17,18] and electron diffraction [16,19] showed that the lattice structure reaches the R phase quasithermally after picoseconds to nanoseconds. Transient optical spectroscopies have probed photoinduced changes of the dielectric function in the terahertz [20][21][22], near-IR [9,10,17,23], and visible range [23]. The nonequilibrium state reached by photoexcitation (hereinafter transient phase) differs from the two equilibrium phases, but eventually evolves to the R phase [17][18][19][20][21][22][23][24][25][26][27][28]. The observation of a minimum rise time of 80 fs in the optical response after strong excitation (50 mJ=cm 2 ), described as a structural bottleneck in VO 2 [24], challenged theory to describe the photoinduced crystallographic and electronic PT simultaneously [15,25].Time-resolved photoelectron spectroscopy (TR-PES) directly probes changes of the electronic structure. Previous photoelectron spectroscopy (PES) studies of VO 2 used high photon energies generating photoelectrons with large kinetic energies to study the dynamics of the electronic structure; however, with a low repetition rate (50 Hz [27]) and inadequate time resolution (> 150 fs) the ultrafast dynamics of t...
We calculate quarkonium binding energies using a realistic complex-valued potential for both an isotropic and anisotropic quark-gluon plasma. We determine the disassociation temperatures of the ground and first excited states considering both the real and imaginary parts of the binding energy. We show that the effect of momentum-space anisotropy is smaller on the imaginary part of the binding energy than on the real part of the binding energy. In the case that one assumes an isotropic plasma, we find disassociation temperatures for the J/psi, Upsilon and chi_b of 1.6 T_c, 2.8 T_c, and 1.5 T_c, respectively. We find that a finite oblate momentum-space anisotropy increases the disassociation temperature for all states considered and results in a splitting of the p-wave states associated with the chi_b first excited state of bottomonium.Comment: 23 pages, 9 figures; v4: subtraction of V_infinity corrected to only subtract Re[V_infinity
Electronic stopping of slow protons in ZnO, VO2 (metal and semiconductor phases), HfO2 and Ta2O5 was investigated experimentally. As a comparison of the resulting stopping cross sections (SCS) to data for Al2O3 and SiO2 reveals, electronic stopping of slow protons does not correlate with electronic properties of the specific material such as band gap energies.Instead, the oxygen 2p states are decisive, as corroborated by DFT calculations of the electronic densities of states. Hence, at low ion velocities the SCS of an oxide primarily scales with its oxygen density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.