Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self‐renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name “MSCs” itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
The human umbilical cord (UC) and placenta are non-invasive, primitive and abundant sources of mesenchymal stromal cells (MSCs) that have increasingly gained attention because they do not pose any ethical or moral concerns. Current methods to isolate MSCs from UC yield low amounts of cells with variable proliferation potentials. Since UC is an anatomically-complex organ, differences in MSC properties may be due to the differences in the anatomical regions of their isolation. In this study, we first dissected the cord/placenta samples into three discrete anatomical regions: UC, cord-placenta junction (CPJ), and fetal placenta (FP). Second, two distinct zones, cord lining (CL) and Wharton's jelly (WJ), were separated. The explant culture technique was then used to isolate cells from the four sources. The time required for the primary culture of cells from the explants varied depending on the source of the tissue. Outgrowth of the cells occurred within 3 - 4 days of the CPJ explants, whereas growth was observed after 7 - 10 days and 11 - 14 days from CL/WJ and FP explants, respectively. The isolated cells were adherent to plastic and displayed fibroblastoid morphology and surface markers, such as CD29, CD44, CD73, CD90, and CD105, similarly to bone marrow (BM)-derived MSCs. However, the colony-forming efficiency of the cells varied, with CPJ-MSCs and WJ-MSCs showing higher efficiency than BM-MSCs. MSCs from all four sources differentiated into adipogenic, chondrogenic, and osteogenic lineages, indicating that they were multipotent. CPJ-MSCs differentiated more efficiently in comparison to other MSC sources. These results suggest that the CPJ is the most potent anatomical region and yields a higher number of cells, with greater proliferation and self-renewal capacities in vitro. In conclusion, the comparative analysis of the MSCs from the four sources indicated that CPJ is a more promising source of MSCs for cell therapy, regenerative medicine, and tissue engineering.
Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored. We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ), cord tissue (CT), and Wharton's jelly (WJ). Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.
BackgroundEfficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. The thienodiazepine class of BET inhibitors, such as JQ1, has been extensively studied for the potential treatment of hematological malignancies and several small molecules belonging to this class are currently under clinical investigation. While these compounds are well known to inhibit cancer cell growth and cause apoptosis, their effects on stem cells, particularly mesenchymal stem cells (MSCs), which are important for regeneration of damaged cells and tissues, are unknown. In this study we employed umbilical cord derived MSCs as a model system to evaluate the safety of JQ1.MethodsCord derived MSCs were treated with various doses of JQ1 and subjected to cell metabolic activity, apoptosis, and cell cycle analyses using MTT assay, Annexin-V/FITC and PI staining, and flow cytometry, respectively. The effect of JQ1 on gene expression was determined using microarray and quantitative real-time reverse transcriptase polymerase chain reaction analysis. Furthermore, protein expression of apoptotic and neuronal markers was carried out using western blot and immunostaining, respectively.ResultsOur results showed that JQ1 inhibited cell growth and caused cell cycle arrest in G1 phase but did not induce apoptosis or senescence. JQ1 also down-regulated genes involved in self-renewal, cell cycle, DNA replication, and mitosis, which may have negative implications on the regenerative potential of MSCs. In addition, JQ1 interfered with signaling pathways by down regulating the expression of WNT, resulting in limiting the self-renewal. These results suggest that anticancer agents belonging to the thienodiazepine class of BET inhibitors should be carefully evaluated before their use in cancer therapy.ConclusionsThis study revealed for the first time that JQ1 adversely affected MSCs, which are important for repair and regeneration. JQ1 specifically modulated signal transduction and inhibited growth as well as self-renewal. These findings suggest that perinatal MSCs could be used to supplement animal models for investigating the safety of anticancer agents and other drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0278-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.