Introduction: Children with cerebral palsy (CCP) benefit from intensive arm training. Exergames that can be played at home offer the possibility to increase the frequency of therapy but require reliable and accurate real-time motion tracking via easy-to-use sensors in unsupervised settings and magnetically disturbed environments. Method: We propose an inertial-sensor-based method with a single sensor on the wrist for real-time tracking of the inclination of the forearm. The control parameter of the game was validated with an optical marker-based ground truth system. Results: First experiments with a therapist performing training movements in a healthy and simulated spastic manner show that the forearm inclination well captures the motion dynamics. The accuracy of the inertial-sensor-based measurement is validated with respect to the reference system in three healthy subjects. Orientation offsets between the inertial sensor and the forearm marker set in the range of 2° ̶ 6° and dynamic measurement errors about 3.1° were obtained. Conclusion: This work demonstrates that the proposed method is suitable for real-time control of exergames of CCP. The validation with an optical reference system showed that the forearm inclination can be used as for feedback and therapeutic progress monitoring.
This paper presents the proof-of-concept of a home-based gamified wrist rehabilitation training system for children with cerebral palsy (CCP). We describe the user-centered design process of this system, which is composed of a wrist-worn inertial measurement unit (IMU) and a tangible device with an embedded IMU. The system employs a quaternion-based algorithm for automatic real-time estimation of the range of motion (RoM) covered by adduction/abduction and flexion/extension motions of the wrist. Experimental validation shows that the RoM can be determined with sufficient accuracy to control a game and that the algorithm is applicable in CCP. A serious game, which uses the presented algorithm and enables feedback as well as motivating stimuli, is implemented and evaluated by physiotherapists.
Children with unilateral cerebral palsy (CCP) benefit from intensive training with the affected side. The SHArKi project strives for a motivational support system, using wristbands with inertial measurements units (IMU) to measure arm function, providing biofeedback as well as motivating stimuli. To consider finger and wrist movements as well, this paper covers concepts for a tangible solution and its first implementation including the gamification development. Finalizations of the demonstrator, an overall functional test as well as concluding feedback from CCP are pending.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.