Locomotor activity is a polygenic trait that varies widely among inbred strains of mice (). To characterize the role of D2 dopamine receptors in locomotion, we generated F2 hybrid (129/Sv x C57BL/6) D2 dopamine receptor (D2R)-deficient mice by gene targeting and investigated the contribution of genetic background to open-field activity and rotarod performance. Horizontal activity of D2R-/- mice was approximately half that of drug-naive, strain-matched controls but was significantly greater than haloperidol-treated controls, which were markedly hypokinetic. Wild-type 129/SvEv and C57BL/6 mice with functional D2 receptors had greater interstrain differences in spontaneous activity than those among the F2 hybrid mutants. Incipient congenic strains of D2R-deficient mice demonstrated an orderly gene dosage reduction in locomotion superimposed on both extremes of parental background locomotor activity. In contrast, F2 hybrid D2R-/- mice had impaired motor coordination on the rotarod that was corrected in the congenic C57BL/6 background. Wild-type 129/SvEv mice had the poorest rotarod ability of all groups tested, suggesting that linked substrain 129 alleles, not the absence of D2 receptors per se, were largely responsible for the reduced function of the F2 hybrid D2R-/- and D2R+/- mice. Neurochemical and pharmacological studies revealed unexpectedly normal tissue striatal monoamine levels and no evidence for supersensitive D1, D3, or D4 dopamine receptors in the D2R-/- mice. However, after acute monoamine depletion, akinetic D2R+/- mice had a significantly greater synergistic restoration of locomotion in response to SKF38393 and quinpirole compared with any group of D2R+/+ controls. We conclude that D2R-deficient mice are not a model of Parkinson's disease. Our studies highlight the interaction of multiple genetic factors in the analysis of complex behaviors in gene knock-out mice.
Substantial evidence links alcohol drinking and serotonin (5-HT) functioning in animals. Lowered central 5-HT neurotransmission has been found in a subgroup of alcoholics, possibly those with more aggressive, assaultive tendencies. Several rodent studies have also suggested that intact 5-HT systems are important determinants of sensitivity and/or tolerance to ethanol-induced ataxia and hypothermia. Null mutant mice lacking the 5-HT1B receptor gene (5-HT1B-/-) have been developed that display enhanced aggression and altered 5-HT release in slice preparations from some, but not all, brain areas. We characterized these mice for sensitivity to several effects of ethanol. Mutant mice drank twice as much ethanol as wild-type mice, and voluntarily ingested solutions containing up to 20% ethanol in water. Their intake of food and water, and of sucrose, saccharin and quinine solutions, was normal. Mutants were less sensitive than wild-types on a test of ethanol-induced ataxia and, with repeated drug administration, tended to develop tolerance more slowly. In tests of ethanol withdrawal and metabolism, mutants and wild-type mice showed equivalent responses. Our results suggest that the 5-HT1B receptor participates in the regulation of ethanol drinking, and demonstrate that serotonergic manipulations lead to reduced responsiveness to certain ataxic effects of ethanol without affecting dependence.
Background. Whether current criteria used to define nicotine dependence are informative for genetic research is an important empirical question. The authors used items of the DSM-IV and of the Heaviness of Smoking Index to characterize the nicotine dependence phenotype and to identify salient symptoms in a genetically informative community sample of Australian young adult female and male twins.Method. Phenotypic and genetic factor analyses were performed on nine dependence symptoms (the seven DSM-IV substance dependence criteria and the two Heaviness of Smoking Index (HSI) items derived from the Fagerstro¨m Tolerance Questionnaire, time to first cigarette in the morning and number of cigarettes smoked per day). Phenotypic and genetic analyses were restricted to ever smokers.Results. Phenotypic nicotine dependence symptom covariation was best captured by two factors with a similar pattern of factor loadings for women and men. In genetic factor analysis item covariation was best captured by two genetic but one shared environmental factor for both women and men ; however, item factor loadings differed by gender. All nicotine dependence symptoms were substantially heritable, except for the DSM-IV criterion of 'giving up or reducing important activities in order to smoke ', which was weakly familial.Conclusions. The salient behavioral indices of nicotine dependence are similar for women and men. DSM-IV criteria of tolerance, withdrawal, and experiencing difficulty quitting and HSI items time to first cigarette in the morning and number of cigarettes smoked per day may represent the most highly heritable symptoms of nicotine dependence for both women and men.
Development of sensitization to the locomotor stimulant effects of EtOH may be associated with increased EtOH consumption in mice with high initial avidity for EtOH. In the same mice, voluntary EtOH consumption can also produce behavioral sensitization to the effects of EtOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.