To comprehensively assess microbial diversity and abundance via molecular-analysis-based methods, procedures for sample collection, processing, and analysis were evaluated in depth. A model microbial community (MMC) of known composition, representative of a typical low-biomass surface sample, was used to examine the effects of variables in sampling matrices, target cell density/molecule concentration, and cryogenic storage on the overall efficacy of the sampling regimen. The MMC used in this study comprised 11 distinct species of bacterial, archaeal, and fungal lineages associated with either spacecraft or clean-room surfaces. A known cellular density of MMC was deposited onto stainless steel coupons, and after drying, a variety of sampling devices were used to recover cells and biomolecules. The biomolecules and cells/spores recovered from each collection device were assessed by cultivable and microscopic enumeration, and quantitative and speciesspecific PCR assays. rRNA gene-based quantitative PCR analysis showed that cotton swabs were superior to nylon-flocked swabs for sampling of small surface areas, and for larger surfaces, biological sampling kits significantly outperformed polyester wipes. Species-specific PCR revealed differential recovery of certain species dependent upon the sampling device employed. The results of this study empower current and future molecular-analysis-based microbial sampling and processing methodologies.
A bacterial spore assay and a molecular DNA microarray method were compared for their ability to assess relative cleanliness in the context of bacterial abundance and diversity on spacecraft surfaces. Colony counts derived from the NASA standard spore assay were extremely low for spacecraft surfaces. However, the PhyloChip generation 3 (G3) DNA microarray resolved the genetic signatures of a highly diverse suite of microorganisms in the very same sample set. Samples completely devoid of cultivable spores were shown to harbor the DNA of more than 100 distinct microbial phylotypes. Furthermore, samples with higher numbers of cultivable spores did not necessarily give rise to a greater microbial diversity upon analysis with the DNA microarray. The findings of this study clearly demonstrated that there is not a statistically significant correlation between the cultivable spore counts obtained from a sample and the degree of bacterial diversity present. Based on these results, it can be stated that validated state-of-the-art molecular techniques, such as DNA microarrays, can be utilized in parallel with classical culture-based methods to further describe the cleanliness of spacecraft surfaces.
Recently reported results from latest Mars Orbiters and Rovers missions are transforming our opinion about the red planet. That dry and inhospitable planet reported in the past is becoming a wetter planet with high probabilities of water existence in the past. Nowadays, some results seem to indicate the presence of water beneath the Mars surface. But also mineralogy studies by NASA Opportunity Rover report iron oxides and hydroxides precipitates on Endurance Crater. Sedimentary deposits have been identified at Meridiani Planum. These deposits must have generated in a dune aqueous acidic and oxidizing environment. Similarities appear when we study Rio Tinto, and acidic river under the control of iron.The discovery of extremophiles on Earth widened the window of possibilities for life to develop in the Universe, and as a consequence on Mars and other planetary bodies with astrobiological interest. The compilation of data produced by the ongoing missions offers an interested view for life possibilities to exist: signs of an early wet Mars and rather recent volcanic activity as well as ground morphological characteristics that seem to be promoted by liquid water. The discovery of important accumulations of sulfates and the existence of iron minerals such as jarosite in rocks of sedimentary origin has allowed specific terrestrial models to come into focus. Río Tinto (Southwestern Spain, Iberian Pyritic Belt) is an extreme acidic environment, product of the chemolithotrophic activity of micro-organisms that thrive in the massive pyrite-rich deposits of the Iberian Pyritic Belt. Some particular protective environments should house the organic molecules and bacterial life forms in harsh environments such as Mars surface supporting microniches inside precipitated minerals or inside rocks. Terrestrial analogues could help us to afford the comprehension of habitability (on other planetary bodies).We are reporting here the multidisciplinary study of some endolithic niches inside salt deposits used by phototrophs for taking advantage of sheltering particular light wavelengths. These acidic salts deposits located in Río Tinto shelter life forms that are difficult to visualize by eye. This interdisciplinary field analogue campaign was conducted in the framework of the CAREX FP7 EC programme.
The survival of Salmonella on dried chamomile flowers, peppermint leaves, and green tea leaves stored under different conditions was examined. Survival and growth of Salmonella was also assessed after subsequent brewing using dried inoculated teas. A Salmonella enterica serovar cocktail was inoculated onto different dried tea leaves or flowers to give starting populations of approximately 10 log CFU/g. The inoculum was allowed to dry (at ambient temperature for 24 h) onto the dried leaves or flowers prior to storage under 25 and 35 °C at low (<30% relative humidity [RH]) and high (>90% RH) humidity levels. Under the four storage conditions tested, survival followed the order 25 °C with low RH > 35 °C with low RH > 25 °C with high RH > 35 °C with high RH. Salmonella losses at 25 °C with low RH occurred primarily during drying, after which populations showed little decline over 6 months. In contrast, Salmonella decreased below detection after 45 days at 35 °C and high RH in all teas tested. The thermal resistance of Salmonella was assessed at 55 °C immediately after inoculation of tea leaves or flowers, after drying (24 h) onto tea leaves or flowers, and after 28 days of storage at 25 °C with low RH. All conditions resulted in similar D-values (2.78 ± 0.12, 3.04 ± 0.07, and 2.78 ± 0.56, at 0 h, 24 h, and 28 days, respectively), indicating thermal resistance of Salmonella in brewed tea did not change after desiccation and 28 days of storage. In addition, all brewed teas tested supported the growth of Salmonella. If Salmonella survives after storage, it may also survive and grow after a home brewing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.