The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been continuously observing the variability of solar soft X‐rays and EUV irradiance, monitoring the upstream solar wind and interplanetary magnetic field conditions and measuring the fluxes of solar energetic ions and electrons since its arrival to Mars. In this paper, we provide a comprehensive overview of the space weather events observed during the first ∼1.9 years of the science mission, which includes the description of the solar and heliospheric sources of the space weather activity. To illustrate the variety of upstream conditions observed, we characterize a subset of the event periods by describing the Sun‐to‐Mars details using observations from the MAVEN solar Extreme Ultraviolet Monitor, solar energetic particle (SEP) instrument, Solar Wind Ion Analyzer, and Magnetometer together with solar observations using near‐Earth assets and numerical solar wind simulation results from the Wang‐Sheeley‐Arge‐Enlil model for some global context of the event periods. The subset of events includes an extensive period of intense SEP electron particle fluxes triggered by a series of solar flares and coronal mass ejection (CME) activity in December 2014, the impact by a succession of interplanetary CMEs and their associated SEPs in March 2015, and the passage of a strong corotating interaction region (CIR) and arrival of the CIR shock‐accelerated energetic particles in June 2015. However, in the context of the weaker heliospheric conditions observed throughout solar cycle 24, these events were moderate in comparison to the stronger storms observed previously at Mars.
Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment. We report the discovery of low-altitude, diffuse auroras spanning much of Mars' northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo--electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth.
Measurements of coronal mass ejections (CMEs) by multiple spacecraft at small radial separations but larger longitudinal separations is one of the ways to learn about the three-dimensional structure of CMEs. Here, we take advantage of the orbit of the Wind spacecraft that ventured to distances of up to 0.012 astronomical units (au) from the Sun-Earth line during the years 2000 to 2002. Combined with measurements from ACE, which is in a tight halo orbit around L1, the multipoint measurements allow us to investigate how the magnetic field inside magnetic ejecta (MEs) changes on scales of 0.005-0.012 au. We identify 21 CMEs measured by these two spacecraft for longitudinal separations of 0.007 au or more. We find that the time-shifted correlation between 30-minute averages of the non-radial magnetic field components measured at the two spacecraft is systematically above 0.97 when the separation is 0.008 au or less, but is on average 0.89 for greater separations. Overall, these newly analyzed measurements, combined with 14 additional ones when the spacecraft separation is smaller, point towards a scale length of longitudinal magnetic coherence inside MEs of 0.25 -0.35 au for the magnitude of the magnetic field but 0.06 -0.12 au for the magnetic field components. This finding raises questions about the very nature of MEs. It also highlights the need for additional "mesoscale" multi-point measurements of CMEs with longitudinal separations of 0.01 -0.2 au.
The solar cycle 23 minimum period has been characterized by a weaker solar and interplanetary magnetic field. This provides an ideal time to study how the strength of the photospheric field affects the interplanetary magnetic flux and, in particular, how much the observed interplanetary fields of different cycle minima can be understood simply from differences in the areas of the coronal holes, as opposed to differences in the surface fields within them. In this study, we invoke smaller source surface radii in the potentialfield source-surface (PFSS) model to construct a consistent picture of the observed coronal holes and the near-Earth interplanetary field strength as well as polarity measurements for the cycles 23 and 22 minimum periods. Although the source surface value of 2.5 R is typically used in PFSS applications, earlier studies have shown that using smaller source surface heights generates results that better match observations during low solar activity periods. We use photospheric field synoptic maps from Mount Wilson Observatory (MWO) and find that the values of ≈ 1.9 R and ≈ 1.8 R for the cycles 22 and 23 minimum periods, respectively, produce the best results. The larger coronal holes obtained for the smaller source surface radius of cycle 23 somewhat offsets the interplanetary consequences of the lower magnetic field at their photospheric footpoints. For comparison, we also use observations from the Michelson Doppler Imager (MDI) and find that the source surface radius of ≈ 1.5 R produces better results for cycle 23, rather than ≈ 1.8 R as suggested from MWO observations. Despite this difference, our results obtained from MWO and MDI observations show a qualitative consistency regarding the origins of the interplanetary field C.O. Lee ( ) · J.G. Luhmann
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.