BackgroundTriatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, which causes Chagas disease. Rhodnius pallescens is a major vector of Chagas disease in Panama. Understanding the microbial ecology of disease vectors is important in the development of vector management strategies that target vector survival and fitness. In this study we examined the whole-body microbial composition of R. pallescens from three locations in Panama.MethodsWe collected 89 R. pallescens specimens using Noireau traps in Attalea butyracea palms. We then extracted total DNA from whole-bodies of specimens and amplified bacterial microbiota using 16S rRNA metabarcoding PCR. The 16S libraries were sequenced on an Illumina MiSeq and analyzed using QIIME2 software.ResultsWe found Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes to be the most abundant bacterial phyla across all samples. Geographical location showed the largest difference in microbial composition with northern Veraguas Province having the most diversity and Panama Oeste Province localities being most similar to each other. Wolbachia was detected in high abundance (48–72%) at Panama Oeste area localities with a complete absence of detection in Veraguas Province. No significant differences in microbial composition were detected between triatomine age class, primary blood meal source, or T. cruzi infection status.ConclusionsWe found biogeographical regions differ in microbial composition among R. pallescens populations in Panama. While overall the microbiota has bacterial taxa consistent with previous studies in triatomine microbial ecology, locality differences are an important observation for future studies. Geographical heterogeneity in microbiomes of vectors is an important consideration for future developments that leverage microbiomes for disease control.
Accurate blood meal identification is critical to understand hematophagous vector-host relationships. This study describes a customizable Next-Generation Sequencing (NGS) approach to identify blood meals from Rhodnius pallescens (Hemiptera: Reduviidae) triatomines using multiple barcoded primers and existing software to pick operational taxonomic units and match sequences for blood meal identification. We precisely identified all positive control samples using this method and further examined 74 wild-caught R. pallescens samples. With this novel blood meal identification method, we detected 13 vertebrate species in the blood meals, as well as single and multiple blood meals in individual bugs. Our results demonstrate the reliability and descriptive uses of our method.
Vector-borne pathogen transmission is shaped by multiple abiotic and biotic factors. Understanding the relative importance of these factors on vector abundance and infection is important for developing vector-borne disease control strategies. The crown of the Attalea butyracea palm provides a natural arboreal mesocosm suitable for studying how food web relations and microclimate affect Chagas disease vectors of the genus Rhodnius, which feed on vertebrate blood and interact with many vertebrate and invertebrate species, vegetation, and detritus within the palm crown. We performed a cross-sectional, observational study of A. butyracea crowns using a community ecology network approach to evaluate abiotic and biotic conditions associated with Rhodnius pallescens abundance and infection with Trypanosoma cruzi, the Chagas disease etiologic agent. We collected 1098 R. pallescens from 105 A. butyracea crowns in rural landscapes of Panama. In a palm subset (N = 49), we recorded microclimate and habitat conditions and counted vertebrate and invertebrate species in order to characterize palm crown food webs. We used food web metrics, namely Generality (average number of prey per predator) and Vulnerability (average number of predators per prey) to evaluate associations between palm community trophic structure, vector predators, vector blood meal species composition, vector abundance, and vector T. cruzi infection. Field data analyzed with generalized linear models showed that vector abundance and infection in a given palm crown were influenced by a combination of geographic location, land-use type, palm crown animal community composition, and microhabitat conditions. Vector abundance was negatively associated with increased overall palm crown community diversity. However, vector abundance was positively associated with the invertebrate predator and mammal community. R. pallescens Vulnerability score, which measures predation pressure on the vector within the palm crown, was positively associated with vector abundance. Vector infection with T. cruzi was positively associated with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.