Specific, peripheral C-tactile afferents contribute to the perception of tactile pleasure, but the brain areas involved in their processing remain debated. We report the first human lesion study on the perception of C-tactile touch in right hemisphere stroke patients (N = 59), revealing that right posterior and anterior insula lesions reduce tactile, contralateral and ipsilateral pleasantness sensitivity, respectively. These findings corroborate previous imaging studies regarding the role of the posterior insula in the perception of affective touch. However, our findings about the crucial role of the anterior insula for ipsilateral affective touch perception open new avenues of enquiry regarding the cortical organization of this tactile system.
The syndrome of anosognosia for hemiplegia, or the lack of awareness for one’s paralysis following right hemisphere stroke, can provide unique insights into the neurocognitive mechanisms of self-awareness. Yet it remains unclear whether anosognosia for hemiplegia is a modality-specific deficit of sensorimotor monitoring, or whether domain-general processes of attention and belief-updating converge to cause anosognosia for hemiplegia. Using a Bayesian learning framework, we formalised and empirically investigated the hypothesis that failures to update anosognosic beliefs can be explained by abnormalities in the relative uncertainty (i.e. precision) ascribed to prior beliefs versus sensory information in different contexts. We designed a new motor belief-updating task that manipulated both the temporal (prospective and retrospective) and spatial (hemispace most affected by inattention and hemispace less affected by inattention) conditions in which beliefs had to be updated, and we validated its sensitivity to anosognosia for hemiplegia in 26 patients with right hemisphere stroke. We then computed and empirically tested two different Bayesian predictors of prospective beliefs using two proxies for precision in anosognosia for hemiplegia patients: (i) standardised, neuropsychological measures of objective attention abilities, i.e. visuospatial neglect scores, and (ii) subjective uncertainty reports, i.e. confidence ratings. Our results suggest that while neglect does not affect local, sensorimotor error monitoring, it does seem to affect the degree to which observed errors are used to update more general, prospective beliefs about counterfactual motor abilities in anosognosia for hemiplegia. Difficulties in such ‘counterfactual’ belief-updating were associated with disruptions in tracts of the ventral attentional network (i.e. superior longitudinal fasciculus connecting the temporo-parietal junction and ventral frontal cortex) and associated lesions to the insula, inferior parietal cortex and superior temporal regions. These results suggest that self-awareness extends beyond local, retrospective monitoring, requiring also salience-based, convergence of beliefs about the self that go beyond the ‘here-and-now’ of sensorimotor experience.
Specific, peripheral C-tactile afferents contribute to the perception of tactile pleasure, but the brain areas involved in their processing remain debated. We report the first human lesion study on the perception of C-tactile touch (N = 59), revealing that posterior and anterior right insula lesions reduce tactile, contralateral and ipsilateral pleasantness sensitivity, respectively. These findings are consistent with a posterior-to-anterior pattern of integration of interoceptive information in the frontoinsular junction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.