Nocturnal frog species rely extensively on vocalization for reproduction. But recent studies provide evidence for an important, though long overlooked, role of visual communication. In many species, calling males exhibit a conspicuous pulsing vocal sac, a signal bearing visually important dynamic components. Here, we investigate female preference for male vocal sac coloration-a question hitherto unexploredand male colour pattern in the European tree frog (Hyla arborea). Under nocturnal conditions, we conducted two-choice experiments involving video playbacks of calling males with identical calls and showing various naturally encountered colour signals, differing in their chromatic and brightness components. We adjusted video colours to match the frogs' visual perception, a crucial aspect not considered in previous experiments. Females prefer males with a colourful sac and a pronounced flank stripe. Both signals probably enhance male conspicuousness and facilitate detection and localization by females. This study provides the first experimental evidence of a preference for specific vocal sac spectral properties in a nocturnal anuran species. Vocal sac coloration is based on carotenoids and may convey information about male quality worthwhile for females to assess. The informative content of the flank stripe remains to be demonstrated.
I.M., Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems, Marine Chemistry (2015), AbstractIn Hawaiʻi and other Pacific high islands submarine groundwater discharge (SGD) can be a significant and continuous source of solutes to nearshore reefs and may play a key role in the structure and function of benthic coral and algal communities.Identifying SGD sources and linking them to reef biogeochemistry is technically challenging. Here we analyzed spectra of fluorescent dissolved organic matter (fDOM) in coral reefs in the context of a suite of biogeochemical parameters along gradients of SGD to characterize fDOM composition and evaluate the utility of fDOM signatures in tracking groundwater dispersal and transformation. We spatially mapped water column chemistry in Maunalua Bay, O'ahu, Hawaiʻi by collecting 24 water samples in grids at each of two ~0.15 km 2 regions during both high and low tides over a two-day period. We observed clear horizontal gradients in the majority of 15 measured parameters, including inorganic and organic solutes and organic particles that tracked concentrations of conservative SGD tracers (radon, salinity and silicate). Multivariate scanning excitation-emission fluorometry successfully differentiated two distinct groundwater sources and delineated regions of SGD dispersion in each reef from the surrounding water column samples without detectable groundwater. Groundwater was consistently depleted in DOC and enriched in nutrients; although the two SGD sources varied widely in fDOM quantity and fluorophore proportions, indices of humification were consistently elevated in SGD at both sites. Our results provide a robust spectral characterization of fDOM in SGD-influenced coral reefs and indicate the potential for this rapid and cost-effective measurement technique to be useful in tracking SGD dispersal in nearshore ecosystems.
Groundwater inputs are typically overlooked as drivers of environmental change in coastal reef studies. To assess the impact of groundwater discharge on reef biogeochemistry, we examined two fringing reef environments, located in Maunalua Bay on the south shore of O‘ahu, Hawai‘i, that receive large inputs of submarine groundwater discharge. We supplemented 25‐ and 30‐d time series measurements of salinity, water temperature, pH, dissolved oxygen, and 222Rn with high‐resolution 24‐h nutrient, dissolved inorganic carbon (DIC), total alkalinity (TA), and δ13C–DIC measurements to evaluate both groundwater‐induced and biologically‐driven changes in coastal carbonate chemistry across salinity gradients. Submarine groundwater discharge at these two locations was characterized by low pHT (7.36–7.62), and variable DIC (1734–3046 μM) and TA (1716–2958 μM) content relative to ambient seawater. Groundwater‐driven variability in coastal carbonate system parameters was generally on the same order of magnitude as biologically‐driven variability in carbonate system parameters at our study locations. Further, our data revealed a shift in reef metabolism from net dissolution to net calcification across this groundwater‐driven physicochemical gradient. At sites with high levels of groundwater exposure, net community production and calcification rates were reduced. Our findings shed light on the importance of considering groundwater inputs when examining coastal carbonate chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.