The ESX-5 type VII secretion system is a membrane-spanning protein complex key to the virulence of mycobacterial pathogens. However, the overall architecture of the fully assembled translocation machinery and the composition of the central secretion pore have remained unknown. Here, we present the high-resolution structure of the 2.1-megadalton ESX-5 core complex. Our structure captured a dynamic, secretion-competent conformation of the pore within a well-defined transmembrane section, sandwiched between two flexible protein layers at the cytosolic entrance and the periplasmic exit. We propose that this flexibility endows the ESX-5 machinery with large conformational plasticity required to accommodate targeted protein secretion. Compared to known secretion systems, a highly dynamic state of the pore may represent a fundamental principle of bacterial secretion machineries.
To establish an infection, pathogenic mycobacteria use the Type VII secretion or ESX system to secrete virulence proteins across their cell envelope. The five ESX systems (ESX-1 to ESX-5) have evolved diverse functions in the cell, with the ESX-5 found almost exclusively in pathogens. Here we present a high-resolution cryo-electron microscopy structure of the hexameric ESX-5 Type VII secretion system. This 2.1 MDa membrane protein complex is built by a total of 30 subunits from six protomeric units, which are composed of the core components EccB5, EccC5, two copies of EccD5, and EccE5. The hexameric assembly of the overall ESX-5 complex is defined by specific inter-protomer interactions mediated by EccB5 and EccC5. The central transmembrane pore is formed by six pairs of EccC5 transmembrane helices that adopt a closed conformation in the absence of substrate in our structure. On the periplasmic face of the ESX-5 complex, we observe an extended arrangement of the six EccB5 subunits around a central cleft. Our structural findings provide molecular details of ESX-5 assembly and observations of the central secretion pore, which reveal insights into possible gating mechanisms used to regulate the transport of substrates.
Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis , to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis . In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus ; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.