The integration of semiporous membranes into poly(dimethylsiloxane) (PDMS) microfluidic devices is useful for mass transport control. Several methods such as plasma oxidation and manual application of PDMS prepolymer exist to sandwich such membranes into simple channel structures, but these methods are difficult to implement with reliable sealing and no leakage or clogging for devices with intricate channel features. This paper describes a simple but robust strategy to bond semiporous polyester and polycarbonate membranes between layers of PDMS microchannel structures effectively without channel clogging. A thin layer of PDMS prepolymer, spin-coated on a glass slide, is transferred to PDMS substrates with channel features as well as to the edges of the semiporous membrane by stamping. This thin PDMS prepolymer serves as "mortar" to strongly bond the two PDMS layers and seal off the crevices generated from the thickness of the membranes. This bonding method enabled the fabrication of an 8x12 criss-crossing microfluidic channel array with 96 combinations of fluid interactions. The capability of this device for bioanalysis was demonstrated by measuring responses of cells to different color fluorescent reagents.
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, affecting over 10% population over the age of 65 years. Clinically, AD is described by the symptom set of short term memory loss and cognitive decline, changes in mentation and behavior, and eventually long-term memory deficit as the disease progresses. On imaging studies, significant atrophy with subsequent increase in ventricular volume have been observed. Pathology on post-mortem brain specimens demonstrates the classic findings of increased beta amyloid (Aβ) deposition and the presence of neurofibrillary tangles (NFTs) within affected neurons. Neuroinflammation, dysregulation of blood-brain barrier transport and clearance, deposition of Aβ in cerebral blood vessels, vascular risk factors such as atherosclerosis and diabetes, and the presence of the apolipoprotein E4 allele have all been identified as playing possible roles in AD pathogenesis. Recent research has demonstrated the importance of the glymphatic system in the clearance of Aβ from the brain via the perivascular space surrounding cerebral blood vessels. Given the variety of hypotheses that have been proposed for AD pathogenesis, an interconnected, multilayer model offers a unique opportunity to combine these ideas into a single unifying model. Results of this model demonstrate the importance of vessel stiffness and heart rate in maintaining adequate clearance of Aβ from the brain.
Alzheimer's disease (AD) is the most common form of dementia. Even with its well-known symptoms of memory loss and well-characterized pathology of beta amyloid (Aβ) plaques and neurofibrillary tangles, the disease pathogenesis and initiating factors are still not well understood. To tackle this problem, a systems biology model has been developed and used to study the varying effects of variations in the ApoE allele present, as well as the effects of short term and periodic inflammation at low to moderate levels. Simulations showed a late onset peak of Aβ in the ApoE4 case that lead to localized neuron loss which could be ameliorated in part by application of short-term pro-inflammatory mediators. The model that has been developed herein represents one of the first attempts to model AD from a systems approach to study physiologically relevant parameters that may prove useful to physicians in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.