Objectives To identify cytokines that can activate and expand NK cells in the presence of prostate cancer cells in order to determine whether these agents may be useful in future intra‐tumoural administration in pre‐clinical and clinical prostate cancer trials. Materials and Methods Lymphocytes isolated from normal donor blood were set up in co‐cultures with either cancer or non‐cancerous prostate cell lines, together with each of the cytokines interleukin (IL)‐2, IL‐12, IL‐15, interferon (IFN)‐γ or IL‐21 for a period of 7 days. Then, expansion of NK cells, NKT cells and CD8 T cells was measured by flow cytometry and compared with the expansion of the same cells in the absence of prostate cells. The cytotoxic activity of NK cells, as measured by perforin and tumour cell killing, was also assessed. NK cell receptors and their corresponding ligands on prostate tumour cells were analysed to determine whether any of these were modulated by co‐culture. The role of the tumour‐secreted heat shock proteins HSP90 and HSP70 in the expansion of NK cells in the co‐cultures was also investigated because of their effects on NK and CD8 T‐cell activation. Results We showed that, among a panel of cytokines known to cause NK cell activation and expansion, only IL‐15 could actively induce expansion of NK, NKT and CD8 T cells in the presence of prostate cancer cell lines. Furthermore, the expansion of NK cells was far greater (up to 50% greater) in the presence of the cancer cells (LNCaP, PC3) than when lymphocytes were incubated alone. In contrast, non‐cancerous cell lines (PNT2 and WPMY‐1) did not exert any expansion of NK cells. The cytolytic activity of the NK cells, as measured by perforin, CD107a and killing of tumour cells, was also greatest in co‐cultures with IL‐15. Examination of NK cell receptors shows that NKG2D is upregulated to a greater degree in the presence of prostate cancer cells, compared with the upregulation with IL‐15 in lymphocytes alone. However, blocking of NKG2D does not inhibit the enhanced expansion of NK cells in the presence of tumour cells. Conclusions Among a panel of NK cell‐activating cytokines, IL‐15 was the only cytokine that could stimulate expansion of NK cells in the presence of prostate cancer cells; therefore IL‐15 may be a good candidate for novel future intra‐tumoural therapy of the disease.
Interleukin-15 (IL-15) is a cytokine that has been shown to expand CD8 T cell and natural killer (NK) cell populations, and therefore has potential for potentiating adoptive immune cell therapy for cancer. Previously, IL-15 has been shown to induce proliferation of CD8 memory T cells through activation of telomerase. Here, we investigated whether telomerase is also activated during the IL-15 mediated proliferation of NK and NKT-like (CD56+CD3+) cells. We also examined the extent that each of the three signaling pathways known to be stimulated by IL-2/IL-15 (JAK-STAT, PI3K-AKT Ras-RAF/MAPK) were activated and involved in the telomerase expression in the three cell types NK, NKT, or CD8 T cells. To assess cell proliferation and doubling, peripheral blood mononuclear cells (PBMCs) or isolated NK, NKT-like or CD8 T cells were incubated with varying concentrations of IL-15 or IL-2 for 7 days. CD8 T, NK, and NKT cell expansion was determined by fluorophore-conjugated antibody staining and flow cytometry. Cell doubling was investigated using carboxyfluorescein-succinimidyl-ester (CFSE). Telomerase expression was investigated by staining cells with anti-telomerase reverse transcriptase (anti-TERT). Telomerase activity in CD56+ and CD8 T cells was also measured via Telomerase Repeat Amplification Protocol (TRAP). Analysis of cellular expansion, proliferation and TERT expression concluded that IL-15 increased cellular growth of NK, NKT, and CD8 T cells more effectively than IL-2 using low or high doses. IL-15, increased TERT expression in NK and NKT cells by up to 2.5 fold, the same increase seen in CD8 T cells. IL-2 had effects on TERT expression only at high doses (100–1000 ng/ml). Proteome profiling identified that IL-15 activated selected signaling proteins in the three pathways (JAK-STAT, PI3K-AKT, Ras-MAPK) known to mediate IL-2/IL-15 signaling, more strongly than IL-2. Evaluation by signaling pathway inhibitors revealed that JAK/STAT and PI3K/AKT pathways are important in IL-15’s ability to upregulate TERT expression in NK and NKT cells, whereas all three pathways were involved in CD8 T cell TERT expression. In conclusion, this study shows that IL-15 potently stimulates TERT upregulation in NK and NKT cells in addition to CD8 T cells and is therefore a valuable tool for adoptive cell therapies.
Dendritic cells (DCs) have a key role in orchestrating immune responses and are considered important targets for immunotherapy against cancer. In order to develop effective cancer vaccines, detailed knowledge of the micromilieu in cancer lesions is warranted. In this study, flow cytometry and human transcriptome arrays were used to characterize subsets of DCs in head and neck squamous cell tonsillar cancer and compare them to their counterparts in benign tonsils to evaluate subset-selective biomarkers associated with tonsillar cancer. We describe, for the first time, four subsets of DCs in tonsillar cancer: CD123+ plasmacytoid DCs (pDC), CD1c+, CD141+, and CD1c−CD141− myeloid DCs (mDC). An increased frequency of DCs and an elevated mDC/pDC ratio were shown in malignant compared to benign tonsillar tissue. The microarray data demonstrates characteristics specific for tonsil cancer DC subsets, including expression of immunosuppressive molecules and lower expression levels of genes involved in development of effector immune responses in DCs in malignant tonsillar tissue, compared to their counterparts in benign tonsillar tissue. Finally, we present target candidates selectively expressed by different DC subsets in malignant tonsils and confirm expression of CD206/MRC1 and CD207/Langerin on CD1c+ DCs at protein level. This study descibes DC characteristics in the context of head and neck cancer and add valuable steps towards future DC-based therapies against tonsillar cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.