Summary Palmoplantar keratodermas (PPK) comprise a heterogeneous group of keratinization disorders with hyperkeratotic thickening of palms and soles. Sporadic or acquired forms of PPKs and genetic or hereditary forms exist. Differentiation between acquired and hereditary forms is essential for adequate treatment and patient counseling. Acquired forms of PPK have many causes. A plethora of mutations in many genes can cause hereditary PPK. In recent years several new causative genes have been identified. Individual PPK may be quite heterogeneous with respect to presentation and associated symptoms. Since the various hereditary PPK – like many other monogenic diseases – exhibit a very low prevalence, making of the correct diagnosis is challenging and often requires a molecular genetic analysis. Knowledge about the large but quite heterogeneous group of hereditary PPK is also important to dissect the molecular mechanisms of epidermal differentiation on palms and soles, ultimately leading to targeted corrective therapies in the future.
Loss-of-function mutations in the synaptosomal-associated protein 29 (SNAP29) gene cause the cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma syndrome. In this study, we created total (Snap29(-/-)) as well as keratinocyte-specific (Snap29(fl/fl)/K14-Cre) Snap29 knockout mice. Both mutant mice exhibited a congenital distinct ichthyotic phenotype resulting in neonatal lethality. Mutant mice revealed acanthosis and hyperkeratosis as well as abnormal keratinocyte differentiation and increased proliferation. In addition, the epidermal barrier was severely impaired. These results indicate an essential role of SNAP29 in epidermal differentiation and barrier formation. Markedly decreased deposition of lamellar body contents in mutant mice epidermis and the observation of malformed lamellar bodies indicate severe impairments in lamellar body function due to the Snap29 knockout. We also found increased microtubule associated protein-1 light chain 3, isoform B-II levels, unchanged p62/SQSTM1 protein amounts, and strong induction of the endoplasmic reticulum stress marker C/EBP homologous protein in mutant mice. This emphasizes a role of SNAP29 in autophagy and endoplasmic reticulum stress. Our murine models serve as powerful tools for investigating keratinocyte differentiation processes and provide insights into the essential contribution of SNAP29 to epidermal differentiation.
UV radiation is acknowledged as the primary cause of photocarcinogenesis and therefore contributes to the development of skin cancer entities such as squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanoma. Typical DNA photoproducts and indirect DNA damage caused by reactive oxygen species are the result of UV radiation. UV-induced DNA damage is repaired by nucleotide excision repair, which consequently counteracts the development of mutations and skin carcinogenesis. Tumour-suppressor genes are inactivated by mutation and growth-promoting pathways are activated leading to disruption of cell-cycle progression. Depending on the skin cancer entity, some genes are more frequently affected than others. In BCC mutations in Patched or Smoothened are common and affect the Sonic hedgehog pathway. In SCC, cell regulator protein p53 (TP53) mutations are prevalent, as well as mutations of the epidermal growth factor receptor (EGFR), cyclin-dependent kinase 2A (CDKN2A), Rat sarcoma (RAS), or the tyrosine kinase Fyn (FYN). UV-induced mutations in TP53 and CDKN2A are frequent in melanoma. UV-induced inflammatory processes also facilitate photocarcinogenesis. Recent studies showed a connection between photocarcinogenesis and citrus consumption, phytochemicals, alcohol consumption, hormone replacement therapy, as well as oral contraceptive use. Preventative measures include adequate use of sun protection and skin cancer screening at regular intervals, as well as the use of chemopreventative agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.