Major histocompatibility complex (MHC) proteins are encoded by extremely polymorphic genes and play a crucial role in immunity. However, not all genetically different MHC molecules are functionally different. Sette and Sidney (1999) have defined nine HLA class I supertypes and showed that with only nine main functional binding specificities it is possible to cover the binding properties of almost all known HLA class I molecules. Here we present a comprehensive study of the functional relationship between all HLA molecules with known specificities in a uniform and automated way. We have developed a novel method for clustering sequence motifs. We construct hidden Markov models for HLA class I molecules using a Gibbs sampling procedure and use the similarities among these to define clusters of specificities. These clusters are extensions of the previously suggested ones. We suggest splitting some of the alleles in the A1 supertype into a new A26 supertype, and some of the alleles in the B27 supertype into a new B39 supertype. Furthermore the B8 alleles may define their own supertype. We also use the published specificities for a number of HLA-DR types to define clusters with similar specificities. We report that the previously observed specificities of these class II molecules can be clustered into nine classes, which only partly correspond to the serological classification. We show that classification of HLA molecules may be done in a uniform and automated way. The definition of clusters allows for selection of representative HLA molecules that can cover the HLA specificity space better. This makes it possible to target most of the known HLA alleles with known specificities using only a few peptides, and may be used in construction of vaccines. Supplementary material is available at http://www.cbs.dtu.dk/researchgroups/immunology/supertypes.html.
BackgroundCytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL's. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers.Methodology/Principal FindingsWe have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC). Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps.Conclusions/SignificanceWe have developed an efficient “one-pot, mix-and-read” strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins). It is simple, robust, and versatile technique with a very broad application potential as it can be adapted both to small- and large-scale production of one or many different peptide-MHC tetramers for T cell isolation, or epitope screening.
Many different assays for measuring peptide-MHC interactions have been suggested over the years. Yet, there is no generally accepted standard method available. We have recently generated preoxidized recombinant MHC class I molecules (MHC-I) which can be purified to homogeneity under denaturing conditions (i.e., in the absence of any contaminating peptides). Such denatured MHC-I molecules are functional equivalents of "empty molecules". When diluted into aqueous buffer containing beta-2 microglobulin (beta2m) and the appropriate peptide, they fold rapidly and efficiently in an entirely peptide dependent manner. Here, we exploit the availability of these molecules to generate a quantitative ELISA-based assay capable of measuring the affinity of the interaction between peptide and MHC-I. This assay is simple and sensitive, and one can easily envisage that the necessary reagents, standards and protocols could be made generally available to the scientific community.
The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1) correct folding can only take place in combined presence of  2 -microglobulin and a binding peptide; and (2) optimal in vitro conditions for disulfide bond formation (∼ pH 8) and peptide binding (∼ pH 6.6) are far from complementary. Here we present a two-step strategy, which relies on uncoupling the events of disulfide bond formation and peptide binding. In the first phase, heavy-chain molecules with correct disulfide bonding are formed under non-reducing denaturing conditions and separated from scrambled disulfide bond forms by hydrophobic interaction chromatography. In the second step, rapid refolding of the oxidized heavy chains is afforded by disulfide bond-assisted folding in the presence of  2 -microglobulin and a specific peptide. Under conditions optimized for peptide binding, refolding and simultaneous peptide binding of the correctly oxidized heavy chain was much more efficient than that of the fully reduced molecule.Keywords: MHC class I; protein folding; disulfide bond formation; inclusion bodies; hydrophobic interaction chromatography Major histocompatibility complex class I (MHC-I) molecules are expressed on the surface of almost all cells in the human body. These molecules are ternary complexes consisting of three components: (1) a glycosylated heavy chain (44 kD), containing two disulfide bonds; (2) a noncovalently associated light chain,  2 -microglobulin (12 kD), containing a single disulfide bond; and (3) a tightly bound peptide (Springer et al. 1977). Their function is to sample endogenously derived peptides, transport them to the cell surface, and present them to cytotoxic T cells, which continuously scan cell surfaces for peptide-MHC-I complexes. Peptides presented in context with MHC-I molecules originate from the digestion of intracellular proteins, normal ones and those of pathogens. MHC-I molecules therefore serve as a link between the intracellular compartment, which is inaccessible to the cells of the immune system, and the extracellular compartment, in which the immune cells Abbreviations:  2 m,  2 -microglobulin; CV, column volumes; HIC, hydrophobic interaction chromatography; HLA, human leucocyte antigen; IB, inclusion bodies; MHC-I, major histocompability complex class I; SEC, size exclusion chromatography.Article and publication are at http://www.proteinscience.org/cgi
An effective Severe Acute Respiratory Syndrome (SARS) vaccine is likely to include components that can induce specific cytotoxic T-lymphocyte (CTL) responses. The specificities of such responses are governed by human leukocyte antigen (HLA)-restricted presentation of SARS-derived peptide epitopes. Exact knowledge of how the immune system handles protein antigens would allow for the identification of such linear sequences directly from genomic/proteomic sequence information (Lauemoller et al., Rev Immunogenet 2001: 2: 477-91). The latter was recently established when a causative coronavirus (SARS-CoV) was isolated and full-length sequenced (Marra et al., Science 2003: 300: 1399-404). Here, we have combined advanced bioinformatics and high-throughput immunology to perform an HLA supertype-, genome-wide scan for SARS-specific CTL epitopes. The scan includes all nine human HLA supertypes in total covering >99% of all individuals of all major human populations (Sette & Sidney, Immunogenetics 1999: 50: 201-12). For each HLA supertype, we have selected the 15 top candidates for test in biochemical binding assays. At this time (approximately 6 months after the genome was established), we have tested the majority of the HLA supertypes and identified almost 100 potential vaccine candidates. These should be further validated in SARS survivors and used for vaccine formulation. We suggest that immunobioinformatics may become a fast and valuable tool in rational vaccine design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.