Cytotoxic T lymphocytes and natural killer cells kill their targets by secreting specialized granules that contain potent cytotoxic molecules. Through the study of rare immunodeficiency diseases in which this granule pathway of killing is impaired, proteins such as Rab27a have been identified as components of the secretory machinery of these killer cells. Recent evidence suggests that the destruction of activated lymphocytes through granule-mediated killing may be an important mechanism of immunological homeostasis. Although the process by which this occurs is not yet known, it is possible that events taking place at the immunological synapse may render the killer cell susceptible to fratricidal attack by other killer cells.
Mutations in the perforin gene have been found in patients with hemophagocytic lymphohistiocytosis (HLH), a rare autosomal recessive disease. We describe a patient expressing perforin with amino acid changes A91V and W374X. The ability of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells to lyse target cells is greatly reduced. Here we demonstrate that perforin from this patient is not recognized using an antibody raised against native perforin (␦G9), but is readily detected using an antibody raised against a peptide epitope (2d4), suggesting that the epitope recognized by ␦G9 is destroyed by the change at A91V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.