Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.
Organ morphogenesis involves dynamic changes of tissue properties at the cellular scale. In addition, cells need to adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis, however, remains poorly understood. Here we studied the influence of mechanical forces during the formation of the atrioventricular canal (AVC) where cardiac valves develop. We show that in zebrafish the AVC forms within a zone of tissue convergence between the atrium and the ventricle which is associated with increased activation of the actomyosin meshwork and endocardial cell orientation changes. We demonstrate that tissue convergence occurs with a major reduction of endocardial cell volume triggered by mechanical forces and the mechanosensitive channels TRPP2/TRPV4. In addition, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that cell volume change is a key cellular feature activated by mechanical forces during cardiovascular morphogenesis. This work further unravels how mechanical forces and
extracellular matrix can influence tissue remodeling in developing organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.