The recent introduction of the Multi-Pulse Shake-The-Box (MP-STB) method opened the possibility of extending 3D Lagrangian particle tracking (LPT) to the investigation of high-speed flows, where long time-resolved sequences of recordings are currently not available due to the limited acquisition frequency of high-speed systems. The MP-STB technique makes use of an iterative approach to overcome the limitations posed by the short observation time offered by a multi-pulse recording sequence. Multi-pulse sequences are typically obtained by synchronizing multiple illumination systems in order to generate bursts of laser pulses where the time separation can be freely adjusted down to less than a microsecond. Several strategies can be adopted for the recording of multi-pulse sequences; a dual camera system can be adopted in order to separate the single pulses onto the camera frames (either by means of polarization or timing), while the use of multi-exposed frames allows for the employment of a single imaging system, largely reducing the complexity and cost of the experimental setup. The main strategies to generate multi-pulse recording sequences are presented here; the application and performances of the MP-STB method are discussed based on the analysis of experimental data from the investigation of three turbulent boundary layer flows at velocities ranging from 10 to approximately 30 /. Results show the capability of the MP-STB technique in reconstructing accurate track fields which can be exploited both to describe instantaneous flow structures and to produce highly spatially resolved statistics by means of ensemble average in small bins. The iterative reconstruction and tracking strategy for MP-STB can be successfully adapted to the case of multi-exposed frames. Results suggest that, despite the increase in particle image density resulting from the double-exposed particle images, the adoption of multi-exposed recordings has the potential to become the technique of choice for the recording of multi-pulse sequences suitable for Lagrangian particle tracking in high-speed flows.
The present study demonstrates the aerodynamic and acoustic optimization potential of a counter rotating open rotor. The objective was to maximize the propeller efficiency at top-of-climb conditions and to minimize the noise emission at takeoff while fulfilling the given thrust specifications at two operating conditions (Takeoff and Top of Climb) considered. Both objectives were successfully met by applying an efficient multi-objective optimization procedure in combination with a 3D RANS method. The acoustic evaluation was carried out with a coupled U-RANS and an analytic far field prediction method based on an integral Ffowcs-Williams Hawkings approach. This first part of the paper deals with the application of DLR’s CFD method TRACE to counter rotating open rotors. This study features the choice and placement of boundary conditions, resolution requirements and a corresponding meshing strategy. The aerodynamic performance in terms of thrust, torque and efficiency was evaluated based on steady state calculations with a mixing plane placed in between both rotors, which allowed for an efficient and reliable evaluation of the performance, in particular within the automatic optimization. The aerodynamic optimization was carried by the application of AutoOpti, a multi-objective optimization procedure based on an evolutionary algorithm which also was developed at the Institute of propulsion technology at DLR. The optimization presented in this paper features more than 1600 converged 3D steady-state CFD simulations at two operating conditions, Takeoff and Top of Climb respectively. In order to accelerate the optimization process a surrogate model based on a Kriging interpolation on the response surfaces was introduced. The main constrains and regions of interest during the optimization where a given power split between the rotors at takeoff, retaining an axial outflow at the aft rotor exit at top of climb and fulfilling the given thrust specifications at both operating conditions. Two objectives were defined: One was to maximize the (propeller) efficiency at top of climb conditions. The other objective was an acoustic criteria aiming at decreasing the rotor/rotor interaction noise at takeoff by smoothening the front rotor wakes. Approximately 100 geometric parameters were set free during the optimization to allow for a flexible definition of the 3D blade geometry in terms of rotor sweep, aft rotor clipping, hub contour as well as a flexible definition of different 2D profiles at different radial locations. The acoustic evaluation was carried out based on unsteady 3D-RANS computations with the same CFD method (TRACE) involving an efficient single-passage phase-lag approach. These unsteady results were coupled with the integral Ffowcs-Williams Hawkings method APSIM via a permeable control surface covering both rotors. The far field directivities and spectra for a linear microphone array were evaluated, here mainly at the takeoff certification point. This (still time consuming) acoustic evaluation was carried out after the automatic optimization for a few of the most promising individuals only and results will be presented in comparison with the baseline configuration. This detailed acoustic evaluation also allowed for an assessment of the effectiveness of the acoustic cost function as introduced within the automatic optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.