Neutrophils are potent immune effectors against bacterial infections. Macrophages are important in infections as effectors and regulators, but their exact roles, phenotypic characterization and their relation to neutrophils is incompletely understood. Here we report in a model of bacterial urinary tract infection, one of the most prevalent bacterial infections that tissue-resident Ly6C− macrophages recruited circulating neutrophils and inflammatory Ly6C+ macrophages through chemokines. Neutrophils were primarily recruited through ligands of the chemokine receptor CXCR2, in particular by CXCL1 and less by macrophage migration inhibitory factor (MIF), but not through CXCL5 and CXCL2. Neutrophils, but not Ly6C+ macrophages, cleared the bacteria by phagocytosis. Ly6C+ macrophages instead performed a regulatory function: in response to the infection, they produced the cytokine tumor necrosis factor (TNF), which in turn caused the resident macrophages to secrete CXCL2. This chemokine induced the secretion of matrix metalloproteinase-9 (MMP-9) in neutrophils and allowed these cells to degrade the uroepithelial basement membrane, in order to enter the uroepithelium, the mucosal interface from where the bacteria invade the bladder. Thus, the phagocyte response against bacteria is a highly coordinated event, in which Ly6C− macrophages act as sentinels and Ly6C+ macrophages as innate helper cells. In analogy with T helper cells (Th), we propose to name these helper macrophages (Ph) as they provide a second signal on whether to unleash the principal effector phagocytes, the neutrophils. This cellular triage may prevent ‘false-positive’ immune responses. The role of TNF as innate ‘licensing’ factor contributes to its central role in antibacterial immunity.
DCs and macrophages both express the chemokine receptor CX 3 CR1. Here we demonstrate that its ligand, CX 3 CL1, is highly expressed in the murine kidney and intestine. CX 3 CR1 deficiency markedly reduced DC numbers in the healthy and inflamed kidney cortex, and to a lesser degree in the kidney medulla and intestine, but not in other organs. CX 3 CR1 also promoted influx of DC precursors in crescentic glomerulonephritis, a DC-dependent aggressive type of nephritis. Disease severity was strongly attenuated in CX 3 CR1-deficient mice. Primarily CX 3 CR1-dependent DCs in the kidney cortex processed antigen for the intrarenal stimulation of T helper cells, a function important for glomerulonephritis progression. In contrast, medullary DCs played a specialized role in inducing innate immunity against bacterial pyelonephritis by recruiting neutrophils through rapid chemokine production. CX 3 CR1 deficiency had little effect on the immune defense against pyelonephritis, as medullary DCs were less CX 3 CR1 dependent than cortical DCs and because recruited neutrophils produced chemokines to compensate for the DC paucity. These findings demonstrate that cortical and medullary DCs play specialized roles in their respective kidney compartments. We identify CX 3 CR1 as a potential therapeutic target in glomerulonephritis that may involve fewer adverse side effects, such as impaired anti-infectious defense or compromised DC functions in other organs.
Cardiac tissue remodeling in the course of chronic left ventricular hypertrophy requires phagocytes which degrade cellular debris, initiate and maintain tissue inflammation and reorganization. The dynamics of phagocytes in left ventricular hypertrophy have not been systematically studied. Here, we characterized the temporal accumulation of leukocytes in the cardiac immune response by flow cytometry and fluorescence microscopy at day 3, 6 and 21 following transverse aortic constriction (TAC). Cardiac hypertrophy due to chronic pressure overload causes cardiac immune response and inflammation represented by an increase of immune cells at all three time points among which neutrophils reached their maximum at day 3 and macrophages at day 6. The cardiac macrophage population consisted of both Ly6Clow and Ly6Chigh macrophages. Ly6Clow macrophages were more abundant peaking at day 6 in response to pressure overload. During the development of cardiac hypertrophy the expression pattern of adhesion molecules was investigated by qRT-PCR and flow cytometry. CD11b, CX3CR1 and ICAM-1 determined by qRT-PCR in whole cardiac tissue were up-regulated in response to pressure overload at day 3 and 6. CD11b and CX3CR1 were significantly increased by TAC on the surface of Ly6Clow but not on Ly6Chigh macrophages. Furthermore, ICAM-1 was up-regulated on cardiac endothelial cells. In fluorescence microscopy Ly6Clow macrophages could be observed attached to the intra- and extra-vascular vessel-wall. Taken together, TAC induced the expression of adhesion molecules, which may explain the accumulation of Ly6Clow macrophages in the cardiac tissue, where these cells might contribute to cardiac inflammation and remodeling in response to pressure overload.
CCR2 is thought to recruit monocytes to sites of infection. Two subpopulations of murine blood monocytes differing in Gr1 and CCR2 expression have been described. The exact role of CCR2 in migration of CCR2lowGr1low and CCR2highGr1high monocytes into nonlymphoid tissue is controversial. In this study, we have addressed this question in a murine model of bacterial urinary tract infection. Only Gr1high monocytes were recruited into the infected bladder. CCR2 deficiency reduced their frequency in this organ, indicating a requirement of this chemokine receptor. Importantly, CCR2-deficient mice also showed reduced Gr1high monocyte numbers in the blood, but not in the bone marrow (BM), indicating that CCR2 acted at the step of monocyte release into the circulation. The same was found also in noninfected mice, indicating a further involvement of CCR2 in steady-state BM egress. An additional requirement of CCR2 in monocyte recruitment from the blood into the bladder was excluded by tracking particle-labeled endogenous monocytes and by adoptive transfer of BM-derived monocyte subsets. These findings demonstrate that CCR2 governs homeostatic and infection-triggered release of Gr1high monocytes from the BM into the blood but is dispensable for recruitment into a nonlymphoid tissue.
The Western diet is rich in salt, which poses various health risks. A high-salt diet (HSD) can stimulate immunity through the nuclear factor of activated T cells 5 (Nfat5)–signaling pathway, especially in the skin, where sodium is stored. The kidney medulla also accumulates sodium to build an osmotic gradient for water conservation. Here, we studied the effect of an HSD on the immune defense against uropathogenic E. coli–induced pyelonephritis, the most common kidney infection. Unexpectedly, pyelonephritis was aggravated in mice on an HSD by two mechanisms. First, on an HSD, sodium must be excreted; therefore, the kidney used urea instead to build the osmotic gradient. However, in contrast to sodium, urea suppressed the antibacterial functionality of neutrophils, the principal immune effectors against pyelonephritis. Second, the body excretes sodium by lowering mineralocorticoid production via suppressing aldosterone synthase. This caused an accumulation of aldosterone precursors with glucocorticoid functionality, which abolished the diurnal adrenocorticotropic hormone–driven glucocorticoid rhythm and compromised neutrophil development and antibacterial functionality systemically. Consistently, under an HSD, systemic Listeria monocytogenes infection was also aggravated in a glucocorticoid-dependent manner. Glucocorticoids directly induced Nfat5 expression, but pharmacological normalization of renal Nfat5 expression failed to restore the antibacterial defense. Last, healthy humans consuming an HSD for 1 week showed hyperglucocorticoidism and impaired antibacterial neutrophil function. In summary, an HSD suppresses intrarenal neutrophils Nfat5-independently by altering the local microenvironment and systemically by glucocorticoid-mediated immunosuppression. These findings argue against high-salt consumption during bacterial infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.