Today, commercially used brasses commonly contain 2 to 4 wt% lead. As the availability of low-lead and lead-free brass increases, there are environmental incentives for investigating the consequences of replacing the lead-containing brasses with lead-free equivalents. Generally, lead-free brass is expected to have a lower machinability than its lead-alloyed counterpart, implying a higher manufacturing cost. Thus, the aim of this study has been to quantify the added manufacturing cost by replacing a standard brass alloy with a low-lead alternative. This was done through a case study performed at a Swedish SME which replaced CuZn39Pb3 (3.3 wt% Pb) with low-lead CuZn21Si3P (< 0.09 wt% lead) for a select part. Since CuZn21Si3P is almost twice as expensive as CuZn39Pb3, the material cost was found to have a substantial influence on the manufacturing cost. Additionally, the lower machinability implied a longer cycle time and higher losses while machining CuZn21Si3P, resulting in a 77% overall increase in manufacturing cost when using the low-lead material. Arguably, the difference in material cost, and thus manufacturing cost, may decrease over time making production of low-lead and lead-free brass products a viable option, especially when considering the environmental incentive for decreasing the amount of lead in circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.