A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.
Shoot branching is inhibited by auxin transported down the stem from the shoot apex. Auxin does not accumulate in inhibited buds and so must act indirectly. We show that mutations in the MAX4 gene of Arabidopsis result in increased and auxin-resistant bud growth. Increased branching in max4 shoots is restored to wild type by grafting to wild-type rootstocks, suggesting that MAX4 is required to produce a mobile branch-inhibiting signal, acting downstream of auxin. A similar role has been proposed for the pea gene, RMS1. Accordingly, MAX4 and RMS1 were found to encode orthologous, auxin-inducible members of the polyene dioxygenase family.Supplemental material is available at http://www.genesdev. org.Received December 6, 2002; revised version accepted March 20, 2003. Variation in shoot branching is an important cause of diversity in plant form. Individual species have a characteristic branching pattern, which can change through the life cycle in response to developmental cues and to environmental conditions (Cline 1991;Beveridge et al. 2003). Branching control therefore requires the integration of many signals, both known and unknown.Shoot branches arise from axillary meristems that form in the axils of leaves on the primary shoot axis. The axillary meristems themselves initiate leaves to form a bud. Bud growth can arrest but has the potential to reactivate to produce a shoot branch. Removal of the primary shoot apex results in activation of arrested axillary buds. The ability of the shoot apex to repress axillary bud growth is termed apical dominance. Thimann and Skoog (1933) reported that a compound, derived from the shoot apex, and later identified as auxin (indole-3-acetic acid), could inhibit the growth of lateral buds when applied to the stump of a decapitated plant. Subsequent work has provided multiple lines of evidence in support of auxinmediated bud inhibition in planta. However, a second messenger must relay the auxin signal into the bud because apically derived auxin is not transported into buds (Morris 1977) and exogenous auxin applied directly to buds does not inhibit their growth (Cline 1996).One model proposes that the effect of auxin on bud growth is mediated by cytokinin. Cytokinin can directly promote bud growth (Cline 1991); transgenic plants with increased auxin levels have reduced cytokinin levels (Eklö f et al. 2000), and cytokinin export from roots increases after decapitation, with this increase being abolished by application of auxin to the decapitated stump (Bangerth 1994). However, there is also good evidence for novel regulators of bud growth downstream of auxin. The ramosus mutants (rms1 to rms5) of pea (for reviews, see Beveridge 2000; Beveridge et al. 2003) have increased lateral branching, but this phenotype can be almost completely rescued by grafting a wild-type (WT) rootstock to an rms1, rms2, or rms5 mutant scion. Such grafting studies show that RMS1 and RMS5 are required for the production of a graft transmissible signal that moves from root to shoot and inhibits branching ...
For almost a century the plant hormone auxin has been central to theories on apical dominance, whereby the growing shoot tip suppresses the growth of the axillary buds below. According to the classic model, the auxin indole-3-acetic acid is produced in the shoot tip and transported down the stem, where it inhibits bud growth. We report here that the initiation of bud growth after shoot tip loss cannot be dependent on apical auxin supply because we observe bud release up to 24 h before changes in auxin content in the adjacent stem. After the loss of the shoot tip, sugars are rapidly redistributed over large distances and accumulate in axillary buds within a timeframe that correlates with bud release. Moreover, artificially increasing sucrose levels in plants represses the expression of BRANCHED1 (BRC1), the key transcriptional regulator responsible for maintaining bud dormancy, and results in rapid bud release. An enhancement in sugar supply is both necessary and sufficient for suppressed buds to be released from apical dominance. Our data support a theory of apical dominance whereby the shoot tip's strong demand for sugars inhibits axillary bud outgrowth by limiting the amount of sugar translocated to those buds.shoot branching | sink demand | decapitation | girdling | long-distance signaling
Smoke is an important abiotic cue for plant regeneration in postfire landscapes. Karrikins are a class of compounds discovered in smoke that promote seed germination and influence early development of many plants by an unknown mechanism. A genetic screen for karrikin-insensitive mutants in Arabidopsis thaliana revealed that karrikin signaling requires the F-box protein MAX2, which also mediates responses to the structurally-related strigolactone family of phytohormones. Karrikins and the synthetic strigolactone GR24 trigger similar effects on seed germination, seedling photomorphogenesis, and expression of a small set of genes during these developmental stages. Karrikins also repress MAX4 and IAA1 transcripts, which show negative feedback regulation by strigolactone. We demonstrate that all of these common responses are abolished in max2 mutants. Unlike strigolactones, however, karrikins do not inhibit shoot branching in Arabidopsis or pea, indicating that plants can distinguish between these signals. These results suggest that a MAX2-dependent signal transduction mechanism was adapted to mediate responses to two chemical cues with distinct roles in plant ecology and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.