Mesothelin is a tumor antigen that is highly expressed in many human cancers, including malignant mesothelioma and pancreatic, ovarian, and lung adenocarcinomas. It is an attractive target for cancer immunotherapy because its normal expression is limited to mesothelial cells, which are dispensable. Several antibody-based therapeutic agents as well as vaccine and T-cell therapies directed at mesothelin are undergoing clinical evaluation. These include antimesothelin immunotoxins (SS1P, RG7787/LMB-100), chimeric antimesothelin antibody (amatuximab), mesothelin-directed antibody drug conjugates (anetumab ravtansine, DMOT4039A, BMS-986148), live attenuated Listeria monocytogenes-expressing mesothelin (CRS-207, JNJ-64041757), and chimeric antigen receptor T-cell therapies. Two antimesothelin agents are currently in multicenter clinical registration trials for malignant mesothelioma: amatuximab in the first-line setting and anetumab ravtansine as second-line therapy. Phase II randomized clinical trials of CRS-207 as a boosting agent and in combination with immune checkpoint inhibition for pancreatic cancer are nearing completion. These ongoing studies will define the utility of mesothelin immunotherapy for treating cancer.
Immunotoxins are a novel class of antibody-conjugated therapeutics currently in clinical development for a variety of malignancies. They consist of an antibody-based targeting domain fused to a bacterial toxin payload for cell killing. Immunotoxins kill cells by inhibiting protein synthesis, a unique mechanism of action that is toxic to both dividing and nondividing cells. Recent advances in the design and administration of immunotoxins are overcoming historical challenges in the field, leading to renewed interest in these therapeutics.The Oncologist 2015;20:176-185Implications for Practice: Immunotoxins are a novel class of antibody-based therapeutics currently in clinical development. A review of the field will help physicians better inform patients about the potential benefits and toxicities of these experimental treatments.
Survival from malignant mesothelioma, particularly pleural mesothelioma, is very poor. For patients with breast, ovarian, or prostate cancers, overall survival is associated with increased sensitivity to platinum chemotherapy due to loss-of-function mutations in DNA repair genes. The goal of this project was to evaluate, in patients with malignant mesothelioma, the relationship between inherited loss-of-function mutations in DNA repair and other tumor suppressor genes and overall survival following platinum chemotherapy. Patients with histologically confirmed malignant mesothelioma were evaluated for inherited mutations in tumor suppressor genes. Survival was evaluated with respect to genotype and site of mesothelioma. Among 385 patients treated with platinum chemotherapy, median overall survival was significantly longer for patients with loss-of-function mutations in any of the targeted genes compared with patients with no such mutation (P = 0.0006). The effect of genotype was highly significant for patients with pleural mesothelioma (median survival 7.9 y versus 2.4 y, P = 0.0012), but not for patients with peritoneal mesothelioma (median survival 8.2 y versus 5.4 y, P = 0.47). Effect of patient genotype on overall survival, measured at 3 y, remained independently significant after adjusting for gender and age at diagnosis, two other known prognostic factors. Patients with pleural mesothelioma with inherited mutations in DNA repair and other tumor suppressor genes appear to particularly benefit from platinum chemotherapy compared with patients without inherited mutations. These patients may also benefit from other DNA repair targeted therapies such as poly-ADP ribose polymerase (PARP) inhibitors.
Purpose Our preclinical work identified depletion of ATR as a top candidate for topoisomerase 1 (TOP1) inhibitor synthetic lethality and showed that ATR inhibition sensitizes tumors to TOP1 inhibitors. We hypothesized that a combination of selective ATR inhibitor M6620 (previously VX-970) and topotecan, a selective TOP1 inhibitor, would be tolerable and active, particularly in tumors with high replicative stress. Patients and Methods This phase I study tested the combination of M6620 and topotecan in 3-week cycles using 3 + 3 dose escalation. The primary end point was the identification of the maximum tolerated dose of the combination. Efficacy and pharmacodynamics were secondary end points. Results Between September 2016 and February 2017, 21 patients enrolled. The combination was well tolerated, which allowed for dose escalation to the highest planned dose level (topotecan 1.25 mg/m, days 1 to 5; M6620 210 mg/m, days 2 and 5). One of six patients at this dose level experienced grade 4 thrombocytopenia that required transfusion, a dose-limiting toxicity. Most common treatment-related grade 3 or 4 toxicities were anemia, leukopenia, and neutropenia (19% each); lymphopenia (14%); and thrombocytopenia (10%). Two partial responses (≥ 18 months, ≥ 7 months) and seven stable disease responses ≥ 3 months (median, 9 months; range, 3 to 12 months) were seen. Three of five patients with small-cell lung cancer, all of whom had platinum-refractory disease, had a partial response or prolonged stable disease (10, ≥ 6, and ≥ 7 months). Pharmacodynamic studies showed preliminary evidence of ATR inhibition and enhanced DNA double-stranded breaks in response to the combination. Conclusion To our knowledge, this report is the first of an ATR inhibitor-chemotherapy combination. The maximum dose of topotecan plus M6620 is tolerable. The combination seems particularly active in platinum-refractory small-cell lung cancer, which tends not to respond to topotecan alone. Phase II studies with biomarker evaluation are ongoing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.