BackgroundOrganisms are subject to various stress conditions, which affect both the organism’s gene expression and phenotype. It is critical to understand microbial responses to stress conditions and uncover the underlying molecular mechanisms. To this end, it is necessary to build a database that collects transcriptomics and phenotypic data of microbes growing under various stress factors for in-depth systems biology analysis. Despite of numerous databases that collect gene expression profiles, to our best knowledge, there are few, if any, databases that collect both transcriptomics and phenotype data simultaneously. In light of this, we have developed an open source, web-based database, namely integrated transcriptomics and phenotype (iTAP) database, that records and links the transcriptomics and phenotype data for two model microorganisms, Escherichia coli and Saccharomyces cerevisiae in response to exposure of various stress conditions.ResultsTo collect the data, we chose relevant research papers from the PubMed database containing all the necessary information for data curation including experimental conditions, transcriptomics data, and phenotype data. The transcriptomics data, including the p value and fold change, were obtained through the comparison of test strains against control strains using Gene Expression Omnibus’s GEO2R analyzer. The phenotype data, including the cell growth rate and the productivity, volumetric rate, and mass-based yield of byproducts, were calculated independently from charts or graphs within the reference papers. Since the phenotype data was never reported in a standardized format, the curation of correlated transcriptomics–phenotype datasets became extremely tedious and time-consuming. Despite the challenges, till now, we successfully correlated 57 and 143 datasets of transcriptomics and phenotype for E. coli and S. cerevisiae, respectively, and applied a regression model within the iTAP database to accurately predict over 93 and 73 % of the growth rates of E. coli and S. cerevisiae, respectively, directly from the transcriptomics data.ConclusionThis is the first time that transcriptomics and phenotype data are categorized and correlated in an open-source database. This allows biologists to access the database and utilize it to predict the phenotype of microorganisms from their transcriptomics data. The iTAP database is freely available at https://sites.google.com/a/vt.edu/biomolecular-engineering-lab/software.
Multiplex and multi-directional control of metabolic pathways is crucial for metabolic engineering to improve product yield of fuels, chemicals, and pharmaceuticals. To achieve this goal, artificial transcriptional regulators such as CRISPR-based transcription regulators have been developed to specifically activate or repress genes of interest. Here, we found that by deploying guide RNAs to target on DNA sites at different locations of genetic cassettes, we could use just one synthetic CRISPR-based transcriptional regulator to simultaneously activate and repress gene expressions. By using the pairwise datasets of guide RNAs and gene expressions, we developed a data-driven predictive model to rationally design this system for fine-tuning expression of target genes. We demonstrated that this system could achieve programmable control of metabolic fluxes when using yeast to produce versatile chemicals. We anticipate that this master CRISPR-based transcription regulator will be a valuable addition to the synthetic biology toolkit for metabolic engineering, speeding up the “design-build-test” cycle in industrial biomanufacturing as well as generating new biological insights on the fates of eukaryotic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.