Triggering receptor expressed on myeloid cells (TREM)-1 is an orphan receptor implicated in innate immune activation. Inhibition of TREM-1 reduces sepsis in mouse models, suggesting a role for it in immune responses triggered by bacteria. However, the absence of an identified ligand has hampered a full understanding of TREM-1 function. We identified complexes between peptidoglycan recognition protein 1 (PGLYRP1) and bacterially derived peptidoglycan that constitute a potent ligand capable of binding TREM-1 and inducing known TREM-1 functions. Interestingly, multimerization of PGLYRP1 bypassed the need for peptidoglycan in TREM-1 activation, demonstrating that the PGLYRP1/TREM-1 axis can be activated in the absence of bacterial products. The role for PGLYRP1 as a TREM-1 activator provides a new mechanism by which bacteria can trigger myeloid cells, linking two known, but previously unrelated, pathways in innate immunity.
Monocytes and macrophages are key mediators of inflammation in rheumatoid arthritis (RA). Their persistence at the inflammatory site is likely to contribute to immunopathology. We sought to characterise one mechanism by which persistence may be achieved: resistance to apoptosis and the role of mir-155 in this process. CD14+ monocytes from peripheral blood (PBM) and synovial fluid (SFM) of RA patients were found to be resistant to spontaneous apoptosis relative to PBM from healthy control (HC) individuals. RA SFM were also resistant to anti-Fas-mediated apoptosis and displayed a gene expression profile distinct from HC and RA PBM populations. Gene expression profiling analysis revealed that the differentially expressed genes in RA SFM vs. PBM were enriched for apoptosis-related genes and showed increased expression of the mir-155 precursor BIC. Following identification of potential mir-155 target transcripts by bioinformatic methods, we show increased levels of mature mir-155 expression in RA PBM and SFM vs. HC PBM and a corresponding decrease in SFM of two predicted mir-155-target mRNAs, apoptosis mediators CASP10 and APAF1. Using miR mimics, we demonstrate that mir-155 over-expression in healthy CD14+ cells conferred resistance to spontaneous apoptosis, but not Fas-induced death in these cells, and resulted in increased production of cytokines and chemokines. Collectively our data indicate that CD14+ cells from patients with RA show enhanced resistance to apoptosis, and suggest that an increase in mir-155 may partially contribute to this phenotype.
An anti-TREM-1 antibody can dampen secretion of proinflammatory cytokines in inflamed patients with elevated PGLYRP-1. Moreover, PGLYRP-1 + myeloperoxidase is a potential biomarker for predicting the effect of anti-TREM-1 therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.