Based on a national tick survey conducted in Tanzania between 1998 and 2001, predictive maps of tick distribution for B. microplus and B. decoloratus were computed and compared with historical maps that originated about 40 years ago. The new data collected showed that except for extremely cold and dry areas B. microplus has extended its distribution range and is now present in all the northern regions of Tanzania, and that high suitability is currently recorded for most of the previously non-occupied areas. In contrast, B. decoloratus, once abundant in Tanzania, has largely retreated to highlands in north and central Tanzania and several other high-altitude refuges. Geostatistical analysis revealed a dissimilar character of distribution for the two species at a local and regional scale, as well as an antagonistic relationship between them in a spatial context. The Tanzania data suggest that an equilibrium phase with a stable parapatric boundary that follows a climate gradient has been achieved. The zone of overlap in the distribution ranges of B. microplus and B. decoloratus is characterized by a decreased infestation rate as well as mutual exclusion on infested cattle. This finding matches studies on parapatry with hybrid zones, where the latter zones that separate species tend to rest in density troughs. Analysis of the Tanzania data shows that the critical factor for the advance of B. microplus and the retreat of B. decoloratus is associated with the 58 mm isohyet and the 22-23 degrees C isotherm and indicates a well developed higher-temperature tolerance for B. microplus. It can be anticipated that climate changes may enhance the spread of B. microplus and consequently Babesia bovis into new areas of the African continent.
In order to implement a robust integrated tick and tick-borne disease control programme in Tanzania, based on ecological and epidemiological knowledge of ticks and their associated diseases, a national tick and sero-surveillance study was carried out in all 21 regions of the mainland, as well as on Mafia Island, between 1998 and 2001. The current distributions of Rhipicephalus appendiculatus, R. pravus, Amblyomma variegatum, A. gemma, and A. lepidum are illustrated and discussed. Tick distribution maps were assessed using the Weights-of-Evidence method (WofE), and employing temperature, humidity, NDVI, rainfall, and land-cover predictive data. Ground-truthing was done to check correspondence both of the data employed in prediction with land-cover characteristics discerned in the field as well as of the surveyed and predicted tick distributions. Statistical methods were used to analyse associations of the tick species with their environment, cattle density, and other ticks. Except for R. appendiculatus, no appreciable changes were demonstrated in the predicted and observed tick distributions compared to the existing maps that originated in the 1950-1960s. Cattle density influenced the distribution of A. variegatum and, to a certain extent, of A. lepidum, but had no appreciable influence on the distribution of any of the other ticks discussed in this paper, neither did livestock movement. Distinct differences for environmental requirements where observed between different tick species within the same genus. The predictive maps of R. appendiculatus and R. pravus suggest their mutually exclusive distribution in Tanzania, and simultaneous statistical analysis showed R. pravus as a greater specialist. Of the three Amblyomma species, A. variegatum is the most catholic tick species in Tanzania, while both A. gemma and A. lepidum belong to the more specialized species. Despite dissimilar habitat preferences, all three Amblyomma spp. co-exist in central Tanzania, where very heterogeneous habitats may simultaneously satisfy the environmental requirements of all three species. The current study, conducted about 4 decades after the last major survey activities, has shown that changing livestock policies, unrestricted livestock movement and a continuous change in climatic/environmental conditions in Tanzania have brought about only limited changes in the distribution patterns of R. appendiculatus, R. pravus and the three Amblyomma species investigated. Whether this observation indicates a relative indifference of these ticks to environmental and/or climate changes allows room for speculation.
East Coast fever (ECF) causes considerable mortality and production losses in the Tanzania smallholder dairy sector and limits the introduction of improved dairy breeds in areas where the disease is present. The infection and treatment method (ITM) was adopted by smallholder dairy farms for ECF immunisation in Hanang and Handeni districts of Tanzania. This study recorded incidence rates for ECF and other tick-borne diseases (TBDs) for ECF-immunised and non-immunised cattle between 1997 and 2000. Approximately 80% of smallholder households from both sites (n = 167) participated in this longitudinal study, with immunisations carried out at the request of the livestock owners. Efficacy of ITM for preventing ECF cases in these crossbred dairy cattle was estimated at 97.6%, while that for preventing ECF deaths was 97.9%. One percent of the cattle developed clinical ECF as a result of immunisation. Since ECF immunisation permits a reduction in acaricide use, an increase in other TBDs is a potential concern. Sixty-three percent of farmers continued to use the same acaricide after immunisation, with 80% of these reducing the frequency of applications. Overall, 78% of farmers increased the acaricide application interval after immunisation beyond that recommended by the manufacturer, resulting in annual savings in the region of USD 4.77 per animal. No statistical difference was observed between the immunised and non-immunised animals in the incidence of non-ECF TBDs. However, immunised animals that succumbed to these diseases showed fewer case fatalities. ITM would therefore appear to be a suitable method for ECF control in Tanzania's smallholder dairy sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.