Rho proteins have been reported to activate phospholipase D (PLD) in in vitro preparations. To examine the role of Rho proteins in receptor signaling to PLD, we studied the effect of Clostridium difficile toxin B, which glucosylates Rho proteins, on the regulation of PLD activity in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor (mAChR). Toxin B treatment of HEK cells potently and efficiently blocked mAChR-stimulated PLD. In contrast, basal and phorbol ester-stimulated PLD activities were not or only slightly reduced. Cytochalasin B and Clostridium botulinum C2 toxin, mimicking the effect of toxin B on the actin cytoskeleton but without involving Rho proteins, had no effect on mAChR-stimulated PLD. Toxin B did not alter cell surface mAChR number and mAChR-stimulated binding of (guanosine 5-O-(thio)triphosphate (GTP␥S)) to G proteins. In addition to mAChR-stimulated PLD, toxin B treatment also inhibited PLD activation by the direct G protein activators, AlF 4؊ and GTP␥S, studied in intact and permeabilized cells, respectively. Finally, C. botulinum C3 exoenzyme, which ADP-ribosylates Rho proteins, mimicked the inhibitory effect of toxin B on GTP␥S-stimulated PLD activity. In conclusion, the data presented indicate that toxin B potently and selectively interferes with receptor coupling mechanisms to PLD, and furthermore suggest an essential role for Rho proteins in receptor signaling to PLD.
Receptors coupled to heterotrimeric guanine nucleotide-binding proteins (G proteins) activate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-hydrolyzing phospholipase C (PLC) enzymes by activated alpha of free beta gamma subunits of the relevant G proteins. To study whether low molecular weight G proteins of the Rho family are involved in receptor signaling to PLC, we examined the effect of Clostridium difficile toxin B, which glucosylates and thereby inactivates Rho proteins, on the regulation of PLC activity in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor (mAChR) subtype. Toxin B treatment of HEK cells did not affect basal PLC activity, but potently and efficiently inhibited mAChR-stimulated inositol phosphate formation. PLC activation by the endogenously expressed thrombin receptor and by the direct G protein activators, A1F-4 and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S), studied in intact and permeabilized cells, respectively, were also inhibited by toxin B treatment. C3 exoenzyme, which ADP-ribosylates Rho proteins, mimicked the inhibitory effect of toxin B on GTP gamma S-stimulated PLC activity. Finally both toxin B and C3 exoenzyme significantly reduced, by 40 to 50%, the total level of PtdIns(4,5)P2 in HEK cells, without affecting the levels of phosphatidylinositol and phosphatidylinositol 4-phosphate. Accordingly, When PLC activity was measured with exogenous PtdIns(4,5)P2 as enzyme substrate, Ca(2+)- as well as GTP gamma S- or A1F-4-stimulated PLC activities were not altered by prior toxin B treatment. In conclusion, evidence is provided that toxin B and C3 exoenzyme, apparently by inactivating Rho proteins, inhibit G protein-coupled receptor signalling to PLC, most likely by reducing the cellular substrate supply.
Activation of muscarinic acetylcholine receptors (mAChR) in human embryonic kidney (HEK) cells stably expressing the human m3 subtype leads to stimulation of both phospholipase C (PLC) and D (PLD). mAChR-stimulated PLD was turned off after 2 min of receptor activation with either the full (carbachol) or partial agonist (pilocarpine) and remained completely suppressed for at least 4 h. Partial recovery was observed 24 h after agonist removal. This rapid arrest of PLD response was not due to a loss of cell surface receptors and was also not caused by negative feedback due to concomitant activation of protein kinase C, tyrosine phosphorylation, increase in cytosolic calcium, or activation of Gi proteins. Furthermore, PLD stimulation by directly activated protein kinase C and GTP-binding proteins was unaltered in carbachol-pretreated cells. Finally, neither prevention of PLD stimulation during carbachol pretreatment by genistein nor inhibition of protein synthesis by cycloheximide, added before or after carbachol challenge, resulted in recovery of mAChR-stimulated PLD. The short term carbachol pretreatment nearly completely abolished agonist-induced binding of guanosine 5'-O-(3-thiotriphosphate) to membranes or permeabilized adherent cells. Full recovery of this response was achieved after 4 h. Similar to transfected m3 mAChR, PLD stimulation by endogenously expressed purinergic receptors was also fully blunted after 2 min of agonist (ATP) treatment. Preexposure of HEK cells to either receptor agonist partially, but not completely, reduced PLD stimulation by the other agonist. In contrast to desensitization of PLD stimulation, 2 min of carbachol treatment led to a sensitization, by up to 2-fold, of mAChR-stimulated inositol phosphate formation. This supersensitivity was also observed with pilocarpine, which acted as a full agonist on PLC. On the basis of these results, we conclude that the m3 mAChR stimulates PLD and PLC in HEK cells with distinct efficiencies and with very distinct durations of each response. The rapid and long lasting desensitization of the PLD response is apparently not due to a loss of cell surface receptors or PLD activation by GTP-binding proteins, but it may involve, at least initially, an uncoupling of receptors from GTP-binding proteins and most likely a loss of an as yet undefined essential transducing component.
We have compared muscarinic acetylcholine receptor (mAChR) coupling to phospholipase C (PLC) and increases in cytoplasmic Ca2+ concentration [Ca2+]i in human embryonic kidney (HEK) cells, stably expressing either the human m3 or m2 receptor subtype. In m3 mAChR-expressing cells, carbachol stimulated inositol phosphate (InsP) formation and increased [Ca2+]i with EC50 values of about 2 microM and 30 nM, respectively. Maximal inositol 1,4,5-trisphosphate (InsP3) production (about fourfold) was rapid (15 s) and stable for 2 min. Maximal increases in [Ca2+]i were 300-350 nM and mainly, almost 90%, due to influx of extracellular Ca2+. The efficacy of pilocarpine for stimulating InsP and Ca2+ responses was not significantly different from that of carbachol. All m3 mAChR-mediated responses were pertussis toxin (PTX)-insensitive. In m2 mAChR-expressing cells, carbachol stimulated InsP formation and increased [Ca2+]i with EC50 values of about 20 microM and 7 microM, respectively. Maximal InsP formation was only 10-15% of that observed in m3 mAChR-expressing cells, whereas maximal elevations of [Ca2+]i were similar in both cell types. Formation of InsP3 was rapid (15 s to 2 min) and about twofold above basal. In contrast to m3 mAChR activation, [Ca2+]i increases induced by m2 mAChR activation were exclusively due to Ca2+ mobilization from intracellular stores. The efficacy of pilocarpine for stimulating InsP and Ca2+ responses was 50% and 20% of the efficacy of carbachol, respectively. PTX treatment did not affect m2 mAChR-induced PLC stimulation, but reduced the m2 mAChR-mediated increases in [Ca2+]i to 50%. In conclusion, m3 and m2 mAChRs stably expressed in HEK cells can induce similar cellular responses; however, they do so by activating apparently distinct signalling pathways. While coupling of m2 mAChR to PLC occurs in a PTX-insensitive manner, coupling to mobilization of Ca2+ from intracellular stores is partly PTX-sensitive and this may occur at least partly independent of PLC activation.
A network structure can be an alternative to classical cooperation between trauma and geriatric units in one clinic and help reduce possible staffing shortage. Due to the lack of scientific evidence, future evaluations of the geriatric trauma register should reveal whether network structures in geriatric trauma surgery lead to a valid improvement in medical care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.