Cyber-physical production systems (CPPS) and digital twins (DT) with a data-driven core enable retrospective analyses of acquired data to achieve a pervasive system understanding and can further support prospective operational management in production systems. Cost pressure and environmental compliances sensitize facility operators for energy and resource efficiency within the whole life cycle while achieving reliability requirements. In manufacturing systems, technical building services (TBS) such as cooling towers (CT) are drivers of resource demands while they fulfil a vital mission to keep the production running. Data-driven approaches, such as data mining (DM), help to support operators in their daily business. Within this paper the development of a data-driven DT for TBS operation is presented and applied on an industrial CT case study located in Germany. It aims to improve system understanding and performance prediction as essentials for a successful operational management. The approach comprises seven consecutive steps in a broadly applicable workflow based on the CRISP-DM paradigm. Step by step, the workflow is explained including a tailored data pre-processing, transformation and aggregation as well as feature selection procedure. The graphical presentation of interim results in portfolio diagrams, heat maps and Sankey diagrams amongst others to enhance the intuitive understanding of the procedure. The comparative evaluation of selected DM algorithms confirms a high prediction accuracy for cooling capacity (R2 = 0.96) by using polynomial regression and electric power demand (R2 = 0.99) by linear regression. The results are evaluated graphically and the transfer into industrial practice is discussed conclusively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.