1 S 16257 is a new bradycardic agent. Its electropharmacological profile has been compared to that of the known bradycardic compound UL-FS 49 (Zatebradine). Intracellular recordings of action potentials (APs) were performed with conventional glass microelectrodes.2 In the rabbit isolated sino-atrial node (SAN) tissue, S 16257 and UL-FS 49 (1 jaM, 3 JiM and 10 AM) were equipotent in slowing spontaneous APs firing predominantly by decreasing the rate of diastolic depolarization (at 3 AM, -23.8 ± 3.9% and -27.9 ± 2.6%, respectively). For the two compounds a maximal effect was obtained at 3 ALM. In these preparations, action potential duration at 50% of total repolarization (APD50) was more affected by UL-FS 49 than S 16257 at any concentration tested (at 3 LM, + 8.9 ± 2.9% and + 29.1 ± 3.7% for S 16257 and UL-FS 49, respectively; P < 0.01). 3 To estimate the direct effects on AP duration, driven cardiac preparations were exposed to these agents. In guinea-pig papillary muscles, paced at a frequency of 1 Hz, increasing concentrations of S 16257 or UL-FS 49 (0.1 to 10 LM, 30 min exposure for each concentration) slightly prolonged AP repolarization. This prolongation was more marked for UL-FS 49 (at 1 ELM, + 6.1 ± 0.6% and + 11.2 ± 1.3% elevation of APDO for S 16257 and UL-FS 49, respectively). 5 These results show that S 16257 slows the rate of spontaneous AP firing in isolated SAN mainly by a reduction of the diastolic depolarization of the cells, which suggests an inhibition of the pace-maker current (If). S 16257 and UL-FS 49 are equipotent in their bradycardic effect but S 16257 is more specific as it induces less increase in myocardial repolarization time.
The present study was designed to test the ability of regenerated endothelium to evoke endothelium-dependent hyperpolarizations. Hyperpolarizations induced by serotonin and bradykinin were compared in isolated porcine coronary arteries with native or regenerated endothelium, 4 weeks after balloon endothelial denudation. The experiments were performed in the presence of inhibitors of nitric oxide synthase (Nomega-nitro-L-arginine) and cyclooxygenase (indomethacin). The transmembrane potential was measured using conventional glass microelectrodes. Smooth muscle cells from coronary arteries with regenerated endothelium were depolarized in comparison with control coronary arteries from the same hearts. Spontaneous membrane potential oscillations of small amplitude or spikes were observed in some of these arteries but never in arteries with native endothelium. In coronary arteries from control pigs, both serotonin and bradykinin induced concentration-dependent hyperpolarizations. In the presence of ketanserin, 10 micromol/L serotonin induced a transient hyperpolarization in control coronary arteries. Four weeks after balloon denudation, the response to serotonin was normal in arteries with native endothelium, but the hyperpolarization was significantly lower in coronary arteries with regenerated endothelium. In control arteries, the endothelium-dependent hyperpolarization obtained with bradykinin (30 nmol/L) was reproducible. Four weeks after balloon denudation, comparable hyperpolarizations were obtained in coronary arteries with native endothelium. By contrast, in arteries with regenerated endothelium, the hyperpolarization to bradykinin became voltage-dependent. In the most depolarized cells, the hyperpolarization to bradykinin was augmented. The changes in resting membrane potential and the alteration in endothelium-dependent hyperpolarizations observed in the coronary arteries with regenerated endothelium may contribute to the reduced response to serotonin and the unchanged relaxation to bradykinin described previously.
ROOH induced enzyme leakage and electromechanical alterations in cardiac cells. These effects of ROOH implicated oxidative mechanisms and resulted in an intracellular calcium overload.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.