In k-means clustering we are given a set of n data points in d-dimensional space d and an integer k, and the problem is to determine a set of k points in d , called centers, to minimize the mean squared distance from each data point to its nearest center. No exact polynomial-time algorithms are known for this problem. Although asymptotically efficient approximation algorithms exist, these algorithms are not practical due to the very high constant factors involved. There are many heuristics that are used in practice, but we know of no bounds on their performance. We consider the question of whether there exists a simple and practical approximation algorithm for k-means clustering. We present a local improvement heuristic based on swapping centers in and out. We prove that this yields a (9 + ε)-approximation algorithm. We present an example showing that any approach based on performing a fixed number of swaps achieves an approximation factor of at least (9 − ε) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for algorithms based on performing a fixed number of swaps. To establish the practical value of the heuristic, we present an empirical study that shows that, when combined with Lloyd's algorithm, this heuristic performs quite well in practice.
We present a tone reproduction operator that preserves visibility in high dynamic range scenes. Our method introduces a new histogram adjustment technique, based on the population of local adaptation luminances in a scene. To match subjective viewing experience, the method incorporates models for human contrast sensitivity, glare, spatial acuity and color sensitivity. We compare our results to previous work and present examples of our techniques applied to lighting simulation and electronic photography.
In k-means clustering we are given a set of n data points in d-dimensional space d and an integer k, and the problem is to determine a set of k points in d , called centers, to minimize the mean squared distance from each data point to its nearest center. No exact polynomial-time algorithms are known for this problem. Although asymptotically efficient approximation algorithms exist, these algorithms are not practical due to the very high constant factors involved. There are many heuristics that are used in practice, but we know of no bounds on their performance.We consider the question of whether there exists a simple and practical approximation algorithm for k-means clustering. We present a local improvement heuristic based on swapping centers in and out. We prove that this yields a (9 + ε)-approximation algorithm. We present an example showing that any approach based on performing a fixed number of swaps achieves an approximation factor of at least (9 − ε) in all sufficiently high dimensions. Thus, our approximation factor is almost tight for algorithms based on performing a fixed number of swaps. To establish the practical value of the heuristic, we present an empirical study that shows that, when combined with Lloyd's algorithm, this heuristic performs quite well in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.