Horizontal DNA transfer is an important factor of evolution and participates in biological diversity. Unfortunately, the location and length of horizontal transfers (HTs) are known for very few species. The usage of short oligonucleotides in a sequence (the so-called genomic signature) has been shown to be species-specific even in DNA fragments as short as 1 kb. The genomic signature is therefore proposed as a tool to detect HTs. Since DNA transfers originate from species with a signature different from those of the recipient species, the analysis of local variations of signature along recipient genome may allow for detecting exogenous DNA. The strategy consists in (i) scanning the genome with a sliding window, and calculating the corresponding local signature (ii) evaluating its deviation from the signature of the whole genome and (iii) looking for similar signatures in a database of genomic signatures. A total of 22 prokaryote genomes are analyzed in this way. It has been observed that atypical regions make up ∼6% of each genome on the average. Most of the claimed HTs as well as new ones are detected. The origin of putative DNA transfers is looked for among ∼12 000 species. Donor species are proposed and sometimes strongly suggested, considering similarity of signatures. Among the species studied, Bacillus subtilis, Haemophilus Influenzae and Escherichia coli are investigated by many authors and give the opportunity to perform a thorough comparison of most of the bioinformatics methods used to detect HTs.
The genome of Dehalococcoides ethenogenes strain 195, an anaerobic dehalorespiring bacterium, contains 18 copies of putative reductive dehalogenase genes, including the well-characterized tceA gene, whose gene product functions as the key enzyme in the environmentally important dehalorespiration process. The genome of D. ethenogenes was analyzed using a bioinformatic tool based on the frequency of oligonucleotides. The results in the form of a genomic signature revealed several local disruptions of the host signature along the genome sequence. These fractures represent DNA segments of potentially foreign origin, so-called atypical regions, which may have been acquired by an ancestor through horizontal gene transfer. Most interestingly, 15 of the 18 reductive dehalogenase genes, including the tceA gene, were found to be located in these regions, strongly indicating the foreign nature of the dehalorespiration activity. The GC content and the presence of recombinase genes within some of these regions corroborate this hypothesis. A hierarchical classification of the atypical regions containing the reductive dehalogenase genes indicated that these regions were probably acquired by several gene transfer events.
Background: Molecular phylogenetic methods are based on alignments of nucleic or peptidic sequences. The tremendous increase in molecular data permits phylogenetic analyses of very long sequences and of many species, but also requires methods to help manage large datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.